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ABSTRACT 

For a general function ( )f n ( )1,2,...n = , defining general Hirsch-type indices, we can 

characterize the first increment ( ) ( ) ( ) ( )1
1 1I n n f n nf n= + + −  as well as the second 

increment ( ) ( ) ( )2 1 1
1 1I n I n I n= + − + . An application is given by presenting mathematical 

characterizations of Kosmulski-indices. 
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INTRODUCTION 

 

Let us have a set of papers where the i
th

 paper has ci citations. We assume that papers are 

arranged in decreasing order of received citations (i.e.
i j

c c≥  if and only if i j≤ ). The most 

general Hirsch-type index can be defined as follows. Let ( )f n ( )1, 2,3,...n =  be a general 

increasing function. Then the Hirsch-type index (based on f) for this set of papers and 

citations is the highest rank n such that all the papers on ranks 1,..., n  have at least ( )f n  

citations. Examples are ( )f n n=  for the Hirsch-index (Hirsch (2005)), ( )f n an= ( )0a >  

for the general Wu-index (Egghe (2011) and Wu (2010)for 10a = ) and ( ) a
f n n= ( )0a >  

for the general Kosmulski-index (Egghe (2011) and Kosmulski (2006) for 2a = ). Note that 

the general Wu- and Kosmulski-indices reduce to the Hirsch-index for 1a = .  
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Given such a function ( )f n ( )1,2,3,...n =  the minimum situation to have an index equal 

to n is to have n papers with exactly ( )f n  citations each and where the other papers have 

zero citations. In this case we have a total of ( )nf n  citations. The minimum situation to 

have an index equal to 1n +  is 1n +  papers each having ( )1f n +  citations and where the 

other papers have zero citations. Here we have ( ) ( )1 1n f n+ +  citations in total, hence 

an increase of ( ) ( ) ( )1 1n f n nf n+ + −  citations. We define (see also Egghe (2013 a,b)) 

the general increment of order 1 as, for every 1, 2,3,...n =  

 

( ) ( ) ( ) ( )1
1 1I n n f n nf n= + + −                                      (1) 

 

The general increment of order 2 is defined as 

 

( ) ( ) ( )2 1 1
1I n I n I n= + −                                             (2) 

 

which is equal to, by (1) 

( ) ( ) ( ) ( ) ( ) ( )2
2 2 2 1 1I n n f n n f n nf n= + + − + + +  (3) 

 

for all 1,2,3,...n =  

 

Examples (see also egghe (2013 a, b)): 

1. For the general Wu-index ( ( )f n an= ) we have 

 

( ) ( )1
2 1I n a n= +                                                        (4) 

 

( )2
2I n a=                                                            (5) 

 

for all n. This gives for the Hirsch-index ( )1a = : 

 

( )1
2 1I n n= +                                                         (6) 

 

( )2
2I n =                                                            (7) 

for all n. 

 

2. For the general Kosmulski-index ( ( ) n
f n a= ) we have 

 

( ) ( )
1 1

1
1

a a
I n n n

+ += + −                                             (8) 

 

( ) ( ) ( )
1 1 1

2
2 2 1

a a a
I n n n n

+ + +
= + − + +                                 (9) 

 

for all n. 
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3. For the threshold index ( ( )f n C= , a constant) we have 

 

( )1
I n C=                                                       (10) 

 

( )2
0I n =                                                       (11) 

 

for all n. 

 

In Egghe (2013 a, b) we characterized the general Wu-index (hence also the Hirsch-index) 

and the threshold index using the increments ( )1
I n and ( )2

I n . In the present paper we 

will characterize general Hirsch-type-indices (given a function ( )f n ) by means of their first 

and second increments given a certain function ( ) ( )1
I n nϕ=  and ( ) ( )2

I n nψ= . This will 

be done in the next section. In the third section we apply this general theory to the 

characterization of the Kosmulski-indices by means of the increments (8) and (9). The 

paper closes with conclusions and suggestions for further research. 

 

 

CHARACTERIZATIONS OF GENERAL HIRSCH-TYPE-INDICES USING THE 

INCREMENTS I1(n) AND I2(n) 

 

Let us have a general Hirsch-type-index defined by a general increasing function ( )f n . 

For a general function ( )nϕ we have: 

 

Theorem 1: The following assertions are equivalent: 

(i) ( ) ( )1
I n nϕ=                          (12) 

for all 1, 2,3,...n =  

 

(ii) ( )
( )

( )
1

1
1

n

i

i
f

f n
n n

ϕ
−

== +
∑

                         (13) 

for all 1, 2,3,...n =  

 

 

Proof:  (i) => (ii)  

 

Since ( ) ( )1
I n nϕ= , for all n, we have by (1) 

 

( ) ( ) ( ) ( )1 1n f n nf n nϕ+ + − =                                           (14) 

 

Hence, from (14),  

 

( ) ( )
( )

1
1 1

nn
f n f n

n n

ϕ
+ = +

+ +
                                          (15) 
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Choosing the free parameter ( )1 0f >  we hence have from (15) 

 

( ) ( )
( )11

2 1
2 2

f f
ϕ

= +                               (16) 

 

( ) ( )
( ) ( )1 21

3 1
3 3

f f
ϕ ϕ+

= +                              (17) 

 

(using also (16)). So we have shown that (13) is true for 1,2,3n = . Complete induction 

supposes (13) to be true for n and we have to show (13) for n replaced by 1n + : By (15) 

and (13) (for n) 

 

( )
( )

( )
( )

1

1
1

1
1 1

n

i

i
f nn

f n
n n n n

ϕ
ϕ

−

=

 
 
 + = + +

+ + 
  

∑
 

 

( ) ( )
( )

1
1

1 1
1 1

n

i

i

f n f
n n

ϕ
=+ = +

+ +

∑
 

 

which is (13) for n replaced by 1n + . 

 

 (ii) => (i) 

 

By (13) (applied to n and 1n + ) we have 

 

( ) ( ) ( ) ( )

( ) ( )
( )

( )
( )

1

1

1 1

1 1

1 1
1 1 1

1 1

n n

i i

I n n f n nf n

i i

n f n f
n n n n

ϕ ϕ
−

= =

= + + −

   
   
   = + + − +

+ +   
      

∑ ∑  

 

Hence ( ) ( )1
I n nϕ=  as is readily seen. Hence we proved (i), completing the proof of this 

theorem.           

  

 

Using the second increment yields another characterization of general Hirsch-type-indices. 

For a general function ( )nψ  we have: 

 

Theorem 2: The following assertions are equivalent: 

 

(i) ( ) ( )2
I n nψ=            (18) 

 

for all 1, 2,3,...n =  
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(ii) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2

1

1
2 1 2 2 1 1

n

i

f n n f n f n i i
n

ψ
−

=

 
= − − − + − − 

 
∑     (19) 

 

for all 1, 2,3,...n =  

 

Proof:  (i) => (ii) 

 

From (18) and (3) we have 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )2
2 2 2 1 1I n n f n n f n nf n nψ= + + − + + + =               (20) 

 

for all n. Hence 

 

( )
( )

( ) ( )
( )2 1

2 1
2 2 2

n nn
f n f n f n

n n n

ψ+
+ = + − +

+ + +
                        (21) 

 

So we choose two free parameters ( ) ( )2 1 0f f≥ >  (to obtain an increasing function

( )f n ) and this gives, using (21): 

 

( ) ( ) ( )
( )14 1

3 2 1
3 3 3

f f f
ψ

= − +                                        (22) 

 

( ) ( ) ( ) ( )
( )26 2 2

4 2 1 1
4 4 4 4

f f f
ψ

ψ= − + +                                (23) 

 

using also (22). So we have that (19) is true for 1,2,3,4n =  (defining 
1 0

1 1

0
i i

−

= =

= =∑ ∑ ).  

 

Complete induction supposes (19) to be true for n and 1n + and we have to prove (19) for 

2n + . By (21) we have: 

 

( )
( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1

1

2

1

1 2

1 1

1

2 1 1
2 2 2 1 1 1

2 1

1
2 1 2 2 1 1

2 2

1
4 2 2 1 1 2 1 2 1 2 2 1 1

2

1
2 1 2 1 2 1 2 1

2

n

i

n

i

n n

i i

n

i

n
f n nf n f n i

n n

nn
n f n f n i i

n n n

f n f n i n f n f n i i n
n

n f nf n n i i n i i n
n

ψ

ψ
ψ

ψ ψ ψ

ψ ψ ψ ψ

−

=

−

=

− −

= =

=

+  
+ = − − + − 

+ +  

 
− − − − + − − + 

+ + 

 
= − − + − − − + − − − − + +  

= + − + − + − − − − +
+

∑

∑

∑ ∑

( ) ( ) ( ) ( ) ( )

2 2

1

1

1
2 1 2 1 1

2

n

i

n

i

n f nf n i i
n

ψ

− −

=

=

 
 
 

 
= + − + − + +  

∑ ∑

∑
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which is (19) with n replaced by 2n + . 

 

(ii) => (i) 

 

By (19), applied to n, 1n +  and 2n + we have, by (3): 

 

( ) ( ) ( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( )

2

1

1

1

2

1

2
2 1 2 1 1

2

2 1
2 2 1 1 1

1

2 1 2 2 1 1

n

i

n

i

n

i

n
I n n f nf n i i

n

n
nf n f n i

n

n
n f n f n i i

n

n

ψ

ψ

ψ

ψ

=

−

=

−

=

+  
= + − + − − 

+  

+  
− − − + − 

+  

 
+ − − − + − − 

 

=

∑

∑

∑

 

 

as is readily seen. This completes the proof of (ii) => (i) and hence the proof of theorem.    

 

Based on this theory we will, in the next section, give two characterizations of the general 

Kosmulski-indices. 

 

 

CHARACTERIZATIONS OF THE GENERAL KOSMULSKI-INDICES 

 

For ( )1
I n  as in (8) we have the following theorem. 

 

Theorem 3: The following assertions are equivalent: 

 

(i) ( ) ( )
1 1

1
1

a a
I n n n

+ += + −                                            (24) 

 

for all 1, 2,3,...n =  

 

(ii) ( )
( )

( )1
1 1

1
a

f
f n n

n n

+= + −                                       (25) 

 

 

 

Proof:  This follows from Theorem 1 and the fact that 

 

( ) ( ) ( )

( )

1
1 11

1

1 1

1

1 1

2 ... 2 1

1

n
a aa

i

a a

a

i n n n

n

n

ψ
−

+ ++

=

+ +

+

= − − + −

− − + − −

= −

∑

 

 

The next corollary gives a characterization of the general Kosmulski-indices using the first 

increment. 
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Corollary 4: The following assertions are equivalent 

 

(i) ( )1 1f = and 

( ) ( )
1 1

1
1

a a
I n n n

+ += + −  

 

for all 1, 2,3,...n =  

 

(ii) ( ) a
f n n=  

 

for all 1, 2,3,...n = , hence the general Kosmulski-indices. 

 

Proof:  This follows readily from theorem 3.       

 

For ( )2
I n  as in (9) we have the following theorem: 

 

Theorem 5: The following assertions are equivalent: 

 

(i) ( ) ( ) ( )
1 1 1

2
2 2 1

a a a
I n n n n

+ + += + − + + (26) 

 

for all 1, 2,3,...n =  

 

(ii)  

( ) ( ) ( ) ( ) ( )

( )( ) ( )1 1 1

1
[2 1 2 2 1

2 2.2 1 3 2 ]
a a a

f n n f n f
n

n n n
+ + +

= − − −

+ − − + + − +

                          (27) 

 

 

Proof:  (19) transforms into 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2

1 1 1

1

1
2 1 2 2 1 1 2 2 1

n
a a a

i

f n n f n f n i i i i
n

−
+ + +

=

  = − − − + − − + − + +   
∑  

 

whichis (27) since all coefficients of ( )
11 1

3 ,4 ,..., 1
aa a

n
++ + −  are zero which is readily seen 

by evaluation of all the sΣ . So Theorem 5 follows from Theorem 2.    

 

T 

The next corollary gives a characterization of the general Kosmulski-indices using the 

second increment. 

 

Corollary 6: The following assertions are equivalent: 

 

(i) ( )1 1f = , ( )2 2
a

f =  and ( ) ( ) ( )
1 1 1

2
2 2 1

a a a
I n n n n

+ + += + − + +  

for all 1, 2,3,...n =  
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(ii) ( ) a
f n n=  

 

for all 1, 2,3,...n = , hence the general Kosmulski-indices. 

 

Proof:  This follows readily from Theorem 5 and the fact that  

 

( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( )

1 1 1

1 1

1
2 1 2 2 2 2.2 1 3 2

1
2 1 2 2 3 2 2

a a a a

a a

a

f n n n n n n
n

n n n n n n
n

n

+ + +

+ +

 = − − − + − − + + − + 

 = − − − + − − − + − + 

=

 

 

 

Remark 

 

It is clear from Theorems 3 and 5 and Corollaries 4 and 6 that the incremental identities 

(24) and (26) yield impact measures that are a generalization of the Kosmulski-indices due 

to the fact that they contain a parameter ( )1f  and parameters ( )1f  and ( )2f  

respectively.  

 

This is a remarkable fact but is in line with the results obtained in Egghe (2013 a,b) on the 

Wu- and Hirsch-indices.  

 

 

CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH   

 

We have characterized general Hirsch-type indices by means of their first and second 

increments. They indicate what effort is necessary to increase such an impact measure 

from nto 1n + , for every 1, 2,3,...n = . 

 

We also characterized the general Kosmulski-indices by means of their increments of first 

and second order. 

 

Since we treated the most general Hirsch-type indices, this finishes this type of study but 

leaves open the similar treatment of impact measures which are not of Hirsch-type such as 

e.g. the impact factor. In this context, impact measures such as the g-index (Egghe (2006)) 

or the R-index (Jin et al. (2007)) fall in the category of h-type indices since, by using 

increments ( )1
I n  and ( )2

I n , we only consider papers with an equal number ( )f n  of 

citations. 
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