A general theory of minimal increments for Hirsch-type indices and applications to the mathematical characterization of Kosmulski-indices

L. Egghe

Universiteit Hasselt (UHasselt), Campus Diepenbeek, Agoralaan, B-3590 Diepenbeek, BELGIUM¹ Universiteit Antwerpen (UA), IBW,Stadscampus, Venusstraat 35, B-2000 Antwerpen, BELGIUM e-mail: leo.egghe@uhasselt.be

ABSTRACT

For a general function f(n)(n=1,2,...), defining general Hirsch-type indices, we can characterize the first increment $I_1(n) = (n+1)f(n+1) - nf(n)$ as well as the second increment $I_2(n) = I_1(n+1) - I_1(n+1)$. An application is given by presenting mathematical characterizations of Kosmulski-indices.

Keywords: Increment; Hirsch-type index;Kosmulski-index.

INTRODUCTION

Let us have a set of papers where the ith paper has c_i citations. We assume that papers are arranged in decreasing order of received citations (i.e. $c_i \ge c_j$ if and only if $i \le j$). The most general Hirsch-type index can be defined as follows. Let f(n) (n = 1, 2, 3, ...) be a general increasing function. Then the Hirsch-type index (based on f) for this set of papers and citations is the highest rank n such that all the papers on ranks 1, ..., n have at least f(n) citations. Examples are f(n) = n for the Hirsch-index (Hirsch (2005)), f(n) = an (a > 0) for the general Wu-index (Egghe (2011) and Wu (2010) for a = 10) and $f(n) = n^a$ (a > 0) for the general Kosmulski-index (Egghe (2011) and Kosmulski (2006) for a = 2). Note that the general Wu- and Kosmulski-indices reduce to the Hirsch-index for a = 1.

¹Permanent address

Egghe, L.

Given such a function f(n)(n=1,2,3,...) the minimum situation to have an index equal to n is to have n papers with exactly f(n) citations each and where the other papers have zero citations. In this case we have a total of nf(n) citations. The minimum situation to have an index equal to n+1 is n+1 papers each having f(n+1) citations and where the other papers have zero citations. Here we have (n+1)f(n+1) citations in total, hence an increase of (n+1)f(n+1)-nf(n) citations. We define (see also Egghe (2013 a,b)) the general increment of order 1 as, for every n = 1, 2, 3, ...

$$I_{1}(n) = (n+1) f(n+1) - nf(n)$$
(1)

The general increment of order 2 is defined as

$$I_{2}(n) = I_{1}(n+1) - I_{1}(n)$$
(2)

which is equal to, by (1)

$$I_{2}(n) = (n+2) f(n+2) - 2(n+1) f(n+1) + nf(n)$$
(3)

for all n = 1, 2, 3, ...

Examples (see also egghe (2013 a, b)):

1. For the general Wu-index (f(n) = an) we have

$$I_{1}(n) = a(2n+1)$$
(4)

$$I_2(n) = 2a \tag{5}$$

for all *n*. This gives for the Hirsch-index (a = 1):

$$I_1(n) = 2n+1 \tag{6}$$

$$I_2(n) = 2 \tag{7}$$

for all n.

2. For the general Kosmulski-index ($f(n) = a^n$) we have

$$I_1(n) = (n+1)^{a+1} - n^{a+1}$$
(8)

$$I_{2}(n) = (n+2)^{a+1} - 2(n+1)^{a+1} + n^{a+1}$$
(9)

for all n.

3. For the threshold index (f(n) = C , a constant) we have

$$I_1(n) = C \tag{10}$$

$$I_2(n) = 0 \tag{11}$$

for all n.

In Egghe (2013 a, b) we characterized the general Wu-index (hence also the Hirsch-index) and the threshold index using the increments $I_1(n)$ and $I_2(n)$. In the present paper we will characterize general Hirsch-type-indices (given a function f(n)) by means of their first and second increments given a certain function $I_1(n) = \varphi(n)$ and $I_2(n) = \psi(n)$. This will be done in the next section. In the third section we apply this general theory to the characterization of the Kosmulski-indices by means of the increments (8) and (9). The paper closes with conclusions and suggestions for further research.

CHARACTERIZATIONS OF GENERAL HIRSCH-TYPE-INDICES USING THE INCREMENTS $I_1(n)$ AND $I_2(n)$

Let us have a general Hirsch-type-index defined by a general increasing function f(n). For a general function $\varphi(n)$ we have:

<u>Theorem 1:</u> The following assertions are equivalent:

(i)
$$I_1(n) = \varphi(n)$$
 (12)
for all $n = 1, 2, 3, ...$

(ii)
$$f(n) = \frac{f(1)}{n} + \frac{\sum_{i=1}^{n-1} \varphi(i)}{n}$$
 (13)
for all $n = 1, 2, 3, ...$

<u>Proof:</u> (i) => (ii)

Since $I_1(n) = \varphi(n)$, for all *n*, we have by (1)

$$(n+1) f(n+1) - nf(n) = \varphi(n)$$
(14)

Hence, from (14),

$$f(n+1) = \frac{n}{n+1} f(n) + \frac{\varphi(n)}{n+1}$$
(15)

Choosing the free parameter f(1) > 0 we hence have from (15)

$$f(2) = \frac{1}{2}f(1) + \frac{\varphi(1)}{2}$$
 (16)

$$f(3) = \frac{1}{3}f(1) + \frac{\varphi(1) + \varphi(2)}{3}$$
(17)

(using also (16)). So we have shown that (13) is true for n = 1, 2, 3. Complete induction supposes (13) to be true for n and we have to show (13) for n replaced by n+1: By (15) and (13) (for n)

$$f(n+1) = \frac{n}{n+1} \left[\frac{f(1)}{n} + \frac{\sum_{i=1}^{n-1} \varphi(i)}{n} \right] + \frac{\varphi(n)}{n+1}$$
$$f(n+1) = \frac{1}{n+1} f(1) + \frac{\sum_{i=1}^{n} \varphi(i)}{n+1}$$

which is (13) for *n* replaced by n+1.

(ii) => (i)

By (13) (applied to n and n+1) we have

$$I_{1}(n) = (n+1) f(n+1) - nf(n)$$

= $(n+1) \left[\frac{1}{n+1} f(1) + \frac{\sum_{i=1}^{n} \varphi(i)}{n+1} \right] - n \left[\frac{1}{n} f(1) + \frac{\sum_{i=1}^{n-1} \varphi(i)}{n} \right]$

Hence $I_1(n) = \varphi(n)$ as is readily seen. Hence we proved (i), completing the proof of this theorem.

Using the second increment yields another characterization of general Hirsch-type-indices. For a general function $\psi(n)$ we have:

<u>Theorem 2:</u> The following assertions are equivalent:

(i) $I_2(n) = \psi(n)$ (18)

for all n = 1, 2, 3, ...

(ii)
$$f(n) = \frac{1}{n} \left[2(n-1)f(2) - (n-2)f(1) + \sum_{i=1}^{n-2} (n-i-1)\psi(i) \right]$$
(19)

for all n = 1, 2, 3, ...

<u>Proof:</u> (i) => (ii)

From (18) and (3) we have

$$I_{2}(n) = (n+2) f(n+2) - 2(n+1) f(n+1) + nf(n) = \psi(n)$$
(20)

for all n. Hence

$$f(n+2) = \frac{2(n+1)}{n+2} f(n+1) - \frac{n}{n+2} f(n) + \frac{\psi(n)}{n+2}$$
(21)

So we choose two free parameters $f(2) \ge f(1) > 0$ (to obtain an increasing function f(n)) and this gives, using (21):

$$f(3) = \frac{4}{3}f(2) - \frac{1}{3}f(1) + \frac{\psi(1)}{3}$$
(22)

$$f(4) = \frac{6}{4}f(2) - \frac{2}{4}f(1) + \frac{2}{4}\psi(1) + \frac{\psi(2)}{4}$$
(23)

using also (22). So we have that (19) is true for n = 1, 2, 3, 4 (defining $\sum_{i=1}^{-1} = \sum_{i=1}^{0} = 0$).

Complete induction supposes (19) to be true for *n* and n+1 and we have to prove (19) for n+2. By (21) we have:

$$\begin{split} f(n+2) &= \frac{2(n+1)}{n+2} \frac{1}{n+1} \bigg[2nf(2) - (n-1)f(1) + \sum_{i=1}^{n-1} (n-1)\psi(i) \bigg] \\ &- \frac{n}{n+2} \frac{1}{n} \bigg[2(n-1)f(2) - (n-2)f(1) + \sum_{i=1}^{n-2} (n-i-1)\psi(i) \bigg] + \frac{\psi(n)}{n+2} \\ &= \frac{1}{n+2} \bigg[4f(2) - 2(n-1)f(1) + 2\sum_{i=1}^{n-1} (n-1)\psi(i) - 2(n-1)f(2) + (n-2)f(1) - \sum_{i=1}^{n-2} (n-i-1)\psi(i) + \psi(n) \bigg] \\ &= \frac{1}{n+2} \bigg[2(n+1)f(2) - nf(1) + 2\psi(n-1) + 2\sum_{i=1}^{n-2} (n-i)\psi(i) - \sum_{i=1}^{n-2} (n-i-1)\psi(i) + \psi(n) \bigg] \\ &= \frac{1}{n+2} \bigg[2(n+1)f(2) - nf(1) + \sum_{i=1}^{n} (n-i+1)\psi(i) \bigg] \end{split}$$

Egghe, L.

which is (19) with *n* replaced by n+2.

(ii) => (i)

By (19), applied to n, n+1 and n+2 we have, by (3):

$$I_{2}(n) = \frac{n+2}{n+2} \left(2(n+1)f(2) - nf(1) + \sum_{i=1}^{n} (n-i-1)\psi(i) \right)$$

$$-\frac{2(n+1)}{n+1} \left(2nf(2) - (n-1)f(1) + \sum_{i=1}^{n-1} (n-1)\psi(i) \right)$$

$$+\frac{n}{n} \left(2(n-1)f(2) - (n-2)f(1) + \sum_{i=1}^{n-2} (n-i-1)\psi(i) \right)$$

$$= \psi(n)$$

as is readily seen. This completes the proof of (ii) => (i) and hence the proof of theorem.

Based on this theory we will, in the next section, give two characterizations of the general Kosmulski-indices.

CHARACTERIZATIONS OF THE GENERAL KOSMULSKI-INDICES

For $I_1(n)$ as in (8) we have the following theorem.

<u>Theorem 3:</u> The following assertions are equivalent:

(i) $I_1(n) = (n+1)^{a+1} - n^{a+1}$ (24)

for all n = 1, 2, 3, ...

(ii)
$$f(n) = \frac{f(1)}{n} + \frac{1}{n} (n^{a+1} - 1)$$
 (25)

Proof: This follows from Theorem 1 and the fact that

$$\sum_{i=1}^{n-1} \psi(i) = n^{a+1} - (n-1)^{a+1} + (n-1)^{a+1}$$
$$-(n-2)^{a+1} + \dots - 2^{a+1} - 1$$
$$= n^{a+1} - 1$$

The next corollary gives a characterization of the general Kosmulski-indices using the first increment.

<u>Corollary 4:</u> The following assertions are equivalent

(i) f(1) = 1 and

$$I_1(n) = (n+1)^{a+1} - n^{a+1}$$

for all n = 1, 2, 3, ...

(ii) $f(n) = n^a$

for all n = 1, 2, 3, ..., hence the general Kosmulski-indices.

<u>Proof:</u> This follows readily from theorem 3.

For $I_2(n)$ as in (9) we have the following theorem:

<u>Theorem 5:</u> The following assertions are equivalent:

(i)
$$I_2(n) = (n+2)^{a+1} - 2(n+1)^{a+1} + n^{a+1}$$
 (26)

for all n = 1, 2, 3, ...

(ii)

$$f(n) = \frac{1}{n} [2(n-1)f(2) - (n-2)f(1) + (n-2)(-2.2^{a+1}+1) + (n-3)2^{a+1} + n^{a+1}]$$
(27)

Proof:

(19) transforms into

$$f(n) = \frac{1}{n} \left[2(n-1)f(2) - (n-2)f(1) + \sum_{i=1}^{n-2} (n-i-1) \left[(i+2)^{a+1} - 2(i+1)^{a+1} + i^{a+1} \right] \right]$$

which is (27) since all coefficients of $3^{a+1}, 4^{a+1}, ..., (n-1)^{a+1}$ are zero which is readily seen by evaluation of all the Σs . So Theorem 5 follows from Theorem 2.

Т

The next corollary gives a characterization of the general Kosmulski-indices using the second increment.

<u>Corollary 6:</u> The following assertions are equivalent:

(i)
$$f(1) = 1$$
, $f(2) = 2^{a}$ and $I_{2}(n) = (n+2)^{a+1} - 2(n+1)^{a+1} + n^{a+1}$
for all $n = 1, 2, 3, ...$

(ii) $f(n) = n^a$

for all n = 1, 2, 3, ..., hence the general Kosmulski-indices.

Proof: This follows readily from Theorem 5 and the fact that

$$f(n) = \frac{1}{n} \Big[2(n-1)2^{a} - (n-2) + (n-2)(-2 \cdot 2^{a+1} + 1) + (n-3)2^{a+1} + n^{a+1} \Big]$$

= $\frac{1}{n} \Big[2^{a+1} ((n-1) - 2(n-2) + n - 3) - (n-2) + (n-2) + n^{a+1} \Big]$
= n^{a}

Remark

It is clear from Theorems 3 and 5 and Corollaries 4 and 6 that the incremental identities (24) and (26) yield impact measures that are a generalization of the Kosmulski-indices due to the fact that they contain a parameter f(1) and parameters f(1) and f(2) respectively.

This is a remarkable fact but is in line with the results obtained in Egghe (2013 a,b) on the Wu- and Hirsch-indices.

CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

We have characterized general Hirsch-type indices by means of their first and second increments. They indicate what effort is necessary to increase such an impact measure from n to n+1, for every n = 1, 2, 3, ...

We also characterized the general Kosmulski-indices by means of their increments of first and second order.

Since we treated the most general Hirsch-type indices, this finishes this type of study but leaves open the similar treatment of impact measures which are not of Hirsch-type such as e.g. the impact factor. In this context, impact measures such as the g-index (Egghe (2006)) or the R-index (Jin et al. (2007)) fall in the category of h-type indices since, by using increments $I_1(n)$ and $I_2(n)$, we only consider papers with an equal number f(n) of citations.

ACKNOWLEDGEMENT

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

REFERENCES

Egghe, L. 2006. Theory and practice of the g-index. *Scientometrics,* Vol.69, no. 1: 131-152.

- Egghe, L. 2011. Characterizations of the generalized Wu- and Kosmulski-indices in Lotkaian systems. *Journal of Informetrics*, Vol. 5, no. 3: 439-445.
- Egghe, L. 2013a. A mathematical characterization of the Hirsch-index by means of minimal increments. *Journal of Informetrics*, Vol. 7, no. 2: 388-393.
- Egghe, L. 2013b. Mathematical characterizations of the Wu- and Hirsch-indices using two types of minimal increments. Proceedings of the 14th International Society of Scientometrics and Informetrics Conference, Vienna (Austria), J. Gorraiz, E. Schiebel, C. Gumpenberger, M. Hörlesberger and H. Moed (eds.), 1159-1169, Austrian Institute of Technology.
- Hirsch, J.E. 2005. An index to quantify an individual's scientific research output. *Proceedings of the National Academy of Sciences of the United States of America*, Vol. 102, no. 46: 16569-16572.
- Jin, B., Liang, L., Rousseau, R. and Egghe, L. 2007. The R- and AR-indices: Complementing the h-index. *Chinese Science Bulletin*, Vol. 52, no. 6: 855-863.
- Kosmulski, M. 2006. A new Hirsch-type index saves time and works equally well as the original h-index. *ISSI Newsletter*, Vol. 2, no. 3: 4-6.
- Wu, Q. 2010. The w-index: A measure to assess scientific impact by focusing on widely cited papers. *Journal of the American Society for Information Science and Technology*, Vol. 61, no. 3: 609-614.