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ABSTRACT 

 

This study contributes to the ongoing wave of artificial intelligence integration by applying machine learning 

techniques to automate the assessment of strawberry quality. This research focuses on determining if the sweetness 

of strawberries can be predicted using a combination of physiochemical variables, their interaction parameters, 

and color-based features extracted from image data. This research used a 150-sample collection of strawberry 

images and physiochemical characteristics such as salinity, specific gravity, pH, and Brix. Normalized raw and 

derived feature variables and selected dataset transformations were done. We then split the dataset into mutual 

exclusivity training and test sets. Exponential Gaussian Process Regression (GPR) suited well due to low 

validation errors. This best model predicted Brix values for the remaining test samples. The Mean Absolute 

Percentage Error(MAPE) showed 98.783% forecast accuracy (Acc). We also examined the model's coefficient of 

determination (R2) values, which were 0.78 and 0.9739 for training and testing, respectively. The Mean Square 

Error (MSE) and Mean Absolute Error (MAE) obtained after training were 0.32994 and 0.0453, and testing was 

0.35286 and 0.0663. Using input characteristics with high Acc and low error rates, deep learning models like 

Recurrent Neural Network (RNN) and its derivatives were constructed. Using physiochemical and visual data, 

machine learning and deep learning models successfully predict strawberry sweetness. This prediction accuracy 

shows the complex link between internal components and Brix readings, enabling high-quality strawberry 

production. 

 

Keywords: Brix Value Prediction; Feature Engineering; Gaussian Process Regression; Machine Learning; 

Physio-chemical Parameters; Predictive Model; Strawberry Image Analysis; Sweetness Assessment. 

 

1.0 INTRODUCTION 

The modern agricultural landscape is undergoing a transformation driven by the escalating demand for organic, 

fresh, and nutritious food. However, this paradigm shift is met with challenges in the traditional farming workforce 

due to urbanization, leading to a shortage of skilled laborers. To meet evolving consumer demands and ensure the 

production of high-quality fresh produce, the agricultural sector is compelled to embrace technological 

advancements and implement smart farming practices. Computer vision and machine learning methodologies are 

utilized in the automation procedures of agriculture, encompassing both pre- and post-harvesting stages. As an 

example, an overview on the utilization of image processing and machine learning techniques in automated grading 

systems for fresh produce is presented in [1]. The term ‘smart farming’, characterized by automation and the 

integration of artificial intelligence, has made remarkable progress across various agricultural domains, including 

harvesting, sowing, weeding, etc. Automated robots [2], [3], [4], guided by artificial intelligence, have become 

integral to contemporary agriculture, mitigating cultivation losses and providing valuable insights to farmers. 

Despite the evident advantages of automation in agriculture, certain nations, such as India, have been slow in 

adopting cutting-edge agricultural technologies due to factors like limited awareness, high costs, or a lack of 

understanding of the benefits they offer. Smart farming technologies hold the potential to address challenges like 

labor shortages and evolving consumer preferences, ultimately resulting in increased productivity, higher yields, 

reduced labor costs, and expedited delivery of fresh produce to consumers [5-14]. Fruit quality-based sorting and 
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grading is a pivotal aspect of agricultural processing, significantly influencing preservation, transportation, and 

product valuation [15-21]. In this study, we turn our attention to strawberries, celebrated for their sweet taste, 

vibrant red color, fragrant aroma, and juicy texture. These berries are a rich source of essential nutrients, including 

vitamins C and K, fiber, folic acid, manganese, and potassium. By automating the prediction of sweetness level in 

strawberries, our goal is to ensure the consistent availability of high-quality, highly nutritious strawberries in the 

market, thereby meeting consumer expectations and fostering satisfaction.  

In the agricultural sector, predicting the sweetness level, or Brix values, which quantify the sugar content in 

strawberries and other fruits, holds paramount importance [22], [23], [24]. Growers and distributors depend on 

accurate Brix value predictions to make informed decisions regarding harvesting, sorting, and pricing, enabling 

them to assess strawberry quality and sweetness precisely. Recent advancements in computer vision and machine 

learning techniques offer new possibilities for forecasting Brix values by analyzing physiochemical properties, 

interaction parameters, and visual cues from strawberry images.  

Despite progress in Brix value prediction, there exists a research gap in comprehensively integrating a wide range 

of features that collectively account for the impact of physiochemical properties, interaction parameters, and visual 

characteristics of strawberries. Previous studies have often focused on limited feature sets, neglecting potential 

interconnections and synergistic effects among various traits. Furthermore, visual characteristics, such as color, 

have been underexplored despite their significance in predicting Brix readings.  

This research aims to bridge this gap by developing an innovative regression analysis leveraging machine learning 

techniques. Our analysis will incorporate physiochemical properties, their interaction parameters, and the visual 

features of strawberries to accurately forecast Brix values. By utilizing a comprehensive feature set that includes 

established physiochemical properties, novel interaction parameters capturing intricate relationships, and visual 

features extracted from high-resolution images, we seek to significantly enhance prediction Acc. Moreover, this 

approach will shed light on the factors influencing strawberry sweetness, potentially paving the way for optimizing 

strawberry-growing conditions.  

The implications of this study extend to the food industry, particularly the export market for strawberry products 

such as juice. Growers and producers can harness machine learning techniques to predict strawberry sweetness, 

thereby improving the consistency and quality of their output, enhancing profitability, and ensuring long-term 

sustainability. In the following section, we review existing literature that utilizes machine learning techniques to 

predict Brix values for various fruits, highlighting the relevance and significance of our research.  

The paper is organized into the following sections: Section 1 provides an overview and examines previous research 

in the field. Section 2 provides a detailed account of the materials and methods employed in the study. It 

encompasses a comprehensive description of the datasets utilized, including their acquisition methods, as well as 

an elucidation of the pre-processing procedures undertaken. Additionally, the mechanism for predicting Brix is 

also outlined in the study. Section 3 of the document encompasses the presentation of the results and subsequent 

discussion. In the fourth section, we present our concluding remarks on the findings.  

 

2.0 RELATED WORKS 

 

Numerous research endeavors have been dedicated to the prediction of sugar levels in various fruits, leveraging 

the power of machine learning techniques. In this section, we present two notable works from the literature that 

exemplify the integration of machine learning and sensory data to forecast Brix values in fruits.  

In 2021, Gomes et al. [25] undertook a study focused on predicting sugar content in vintage port wine grapes using 

a combination of machine learning and hyperspectral imaging (HSI) techniques. Vintage port wine grape berries 

exhibit distinct enological features crucial for assessing their maturity, making them an ideal candidate for 

predictive analysis. The study introduced a framework for developing on-the-fly, non-invasive sensing 

technologies, offering a promising avenue for precision viticulture. The research employed four different machine 

learning techniques: ridge regression, partial least squares, neural networks, and convolutional neural networks 

(CNNs). These techniques were applied to predict sugar content in grapes, a key determinant of grape maturity. 

The study encompassed an evaluation of the models' generalization capabilities across various vintages and grape 

types as test samples, which were not included in the training dataset. The results revealed robust performance 

across all approaches, with prediction errors falling within acceptable margins. Particularly noteworthy was the 

superior performance of the 1D CNN model, demonstrating its ability to more accurately and efficiently estimate 

sugar content compared to the other three methods. Furthermore, the study underscored the impact of terroir and 

grape variety variations on predictive models, highlighting the need for comprehensive considerations in grape 

ripening stage prediction. This research showcased the potential of combining hyperspectral imaging technology 
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with machine learning approaches as a viable tool for non-destructive and non-invasive assessment of grape 

quality. The study's findings hinted at the possibility of accurately gauging the sugar levels in maturing wine 

grapes, thereby contributing to enhanced wine production and quality standards.   

In 2018, Sangsongfa et al. [26] embarked on an innovative project aimed at predicting the sweetness of pineapples 

using deep learning algorithms and pineapple images. The authors sought to determine pineapple sweetness 

without the need for invasive procedures, relying solely on external images of the fruit. They considered visual 

cues such as shade variations, fruit size, skin surface characteristics, and fruit color luster. Interestingly, the study 

challenged the conventional belief that fruit hue directly correlates with sweetness, emphasizing the multifaceted 

nature of sweetness determination in pineapples. To achieve accurate predictions, the researchers integrated 

multiple variables and leveraged machine learning methodologies for training and validation. The results indicated 

that sweetness could be predicted with a satisfactory degree of accuracy, as evidenced by metrics such as Acc and 

Root Mean Squared Error (RMSE) obtained from experimental data. The study introduced an innovative approach 

for evaluating pineapple sweetness, utilizing smartphone photography on the Android platform. This approach 

offered simplicity and speed in assessing pineapple sweetness without damaging the fruit. The methodology 

demonstrated an Acc rate of 80.15%, a RMSE of 0.0156, and a reliability rate of 95%. However, it is worth noting 

that the study primarily focused on predominantly green pineapples, with only a minor percentage of orange ones. 

Predictions for fully orange pineapples yielded results with a significant error margin. Despite this limitation, the 

study provided valuable insights and laid the foundation for potential future innovations, including the 

development of predictive tools for pineapples affected by mealybug wilt and Android-based applications.  

These two studies exemplify the capacity of machine learning and image-based techniques to revolutionize fruit 

quality assessment, offering non-invasive, efficient, and accurate methods for predicting Brix values and 

enhancing the overall quality of fresh produce.  

 

3.0 MATERIALS AND METHODS  

 

In the pursuit of enhancing Brix value prediction in strawberries, our methodology leverages machine learning 

regression models, a cornerstone in the field of supervised learning for continuous output prediction using input 

features. Constructing a machine learning-based regression model involves a structured sequence of steps [27]. 

Initially, the dataset is assembled, comprising both independent variables and the target variable to be predicted. 

Subsequently, this data undergoes a rigorous cleaning and pre-processing phase to address issues such as missing 

values and outliers while standardizing it to a format suitable for modeling. The pre-processed data is then divided 

into three subsets: training, validation, and testing. The training set is employed to train the model, while the 

validation set serves to evaluate its performance and fine-tune its parameters if necessary. Following the training 

phase, the model undergoes evaluation using the validation set, with adjustments made to its parameters to 

optimize performance. Finally, the trained model is evaluated with the designated testing set, and if it demonstrates 

satisfactory performance, it is deployed for predictions on novel data in real-world scenarios. Continuous 

monitoring and potential model refinements are essential for ensuring sustained effectiveness.  

 

3.1 Dataset Used  

 

Our study encompasses the acquisition of two distinct datasets: a strawberry image dataset and a dataset containing 

instrumental or physiochemical features obtained from strawberry juice extracts. This dataset was meticulously 

compiled by procuring strawberries exclusively from local fresh markets during their seasonal availability, 

resulting in a dataset comprising 150 samples of 'Mahabaleshwar Strawberry' collected between October 2020 and 

February 2021. Our analysis specifically targets image features related to the color and physiochemical properties 

of strawberries, aiming to explore their potential influence on the overall quality and sensory attributes of the fruit. 

The central focus of our investigation is to determine whether these properties hold the potential to impact the 

sweetness of strawberries, a parameter quantified using the Brix value. To assess the physiochemical properties, 

we consider salinity, specific gravity, and pH values as predictor features. 

 

3.2 Acquisition of Image Dataset and Processing 

 

For the acquisition of strawberry images, we established a controlled studio setup, employing an HD camera. The 

images used for our investigation were obtained through the use of a Logitech C920 HD Pro camera. The camera 

provides a maximum resolution of 1080p at a frame rate of 30 frames per second (fps), enabling Full HD resolution. 

The device is equipped with a sensor that has a resolution of 3 megapixels, enabling the capture of images with 
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high levels of detail. Furthermore, the camera has a diagonal field of view (dFoV) measuring 78 degrees, which 

allows for a broad and inclusive viewpoint when capturing images. The aforementioned parameters played a 

pivotal role in our research endeavors since they were important in acquiring visual data of exceptional quality. 

Fig 1 illustrates the home studio setup designed for capturing images of the strawberry samples, also featuring the 

refractometers used for collecting instrumental parameters [28]. 

 

 
 

 

Fig. 1: Image acquisition: home studio setup [28]  

 

 

To enhance the dataset's quality, we executed several pre-processing steps, including segmentation and image 

augmentation. After meticulously capturing images of 150 strawberry samples, we applied a segmentation 

technique to extract and eliminate the background from these strawberry images, as demonstrated in Fig 2. 

 

 
 

 

Fig. 2: Segmented and background removed strawberries  

 

 

Subsequently, we employed an image augmentation technique to expand the dataset, resulting in a total of 

300 images. Data augmentation plays a crucial role in mitigating the limitations associated with insufficient 

data availability and enhancing the model's ability to generalize to real-world variations [29]. In our research, 

we employed the imageDataAugmenter function in MATLAB to apply diverse transformations, such as 

random rotations, translations along the x and y axes, and other augmentation methods, generating augmented 

images that represent various perspectives and orientations of strawberries. This approach not only bolsters 

dataset diversity but also improves the model's robustness and precision in generating forecasts based on the 

expanded dataset.  

The subsequent phase involved the creation of an image datastore, encompassing a cumulative quantity of 

300 images, comprising 150 original images and 150 augmented ones. From this dataset, we extracted 

histogram-based color features (CF). These features provide valuable insights into an image's color 
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composition and intrinsic attributes, effectively representing the distribution of color values and offering 

quantitative assessments of attributes like color predominance, variety, disparity, equilibrium, and similarity 

or dissimilarity. Histogram-based color features are extensively utilized in diverse image analysis 

applications, encompassing object recognition, image retrieval, and color-based image classification [30]. We 

extracted a total of 256 color features from the dataset of 300 images, resulting in the creation of a 300x256 

matrix representing image features. A glimpse of a few of these color features extracted from five image 

samples is presented in Table 1. These color features, when combined with the physiochemical features, form 

the basis for our Brix prediction analysis.   

 

 

Table 1: Histogram-based color image features from strawberry samples 

 

ID  CF 1  CF 2  CF3  CF 4  CF5  CF6  CF7  

1  0.4451  0.03408  0.03635  0.04271  0.0395  0.0428  0.0458  

2  0.6540  0.00095  0.00217  0.00195  0.0024  0.0027  0.0032  

3  0.7285  0.59869  0.78272  0.97324  0.9884  0.9881  0.9884  

4  0.7462  0.76494  0.83852  0.85162   0.6981  0.6895  0.6232  

5  0.8640  0.33589  0.37982  0.41362  0.4006  0.3937  0.4067  

 

 

3.3 Acquisition of Instrumental Dataset and Processing 

 

In parallel with the image dataset, we conducted instrumental assessments of the strawberries to acquire 

physiochemical parameters critical for our analysis. These parameters include Brix (°Bx), salinity, pH values, and 

specific gravity. To determine sweetness, saltiness, acidity, and density levels, strawberries were sliced using a 

sharp knife, and handheld refractometers, namely the Brix Refractometer, Salinity Refractometer, and Specific 

Gravity Refractometer, were utilized for measurement. 

 

The Calibration of the refractometers with distilled water ensured precise measurements. The data acquisition 

process also involved recording atmospheric temperature and pressure, contributing to comprehensive data 

collection.  

 

The BRIX Measuring Refractometer [31] used in the experimental setup of our research is shown in Fig. 3. 

 

  
 

 

Fig. 3: BRIX measuring refractometer [31] 

 

Additionally, we employed a pH measuring kit to assess pH levels, which is shown in Fig. 4. 
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Fig. 4:  pH measuring device 

 

The pH of a strawberry fruit can be influenced by the composition and concentration of organic acids present, 

including citric acid, malic acid, and tartaric acid. Typically, the pH levels of strawberry fruit fall within the 

range of 3.0 to 3.5, reflecting its acidic nature. Factors such as soil pH, water quality, and temperature during 

fruit development can affect strawberry fruit pH. Salinity levels in strawberries can be influenced by the 

concentration of salts in both the soil and irrigation water. Specific gravity is influenced by the fruit's density 

and composition, including water content, sugar content, and other solids. The specific gravity of strawberry 

fruit typically ranges from 0.94 to 1.03, with higher values indicating a higher concentration of solids. Factors 

affecting specific gravity include plant nutrition, water availability, and temperature during fruit 

development.   

 

A meticulous data collection process was conducted on a sample size of 150 strawberries, resulting in a 

dataset with 150*4 instrumental readings (150 samples, 4 parameters each). These parameters were measured 

using the respective refractometers and a pH meter, and the recorded instrumental values were tabulated and 

saved. The instrumental readings obtained for a few strawberry samples are provided in Table 2. The acquired 

physiochemical parameters were increased in size to 300 by duplicating and then aligned in the same order 

as those of the samples to match the entire number of image samples, including the augmented ones.  

 

Table 2: Instrumental readings of a few strawberry samples 

 

 

Strawberry  ID  
BRIX  Salinity  

Specific 

Gravity  

pH  

1  5  40  1.03  3  

2  5  50  1.04  3  

3  7.5  55  1.04  4  

4  7  60  1.045  3  

5  8.9  77  1.058  5  

6  3.9  30  1.025  3  

7  6.2  55  1.04  4  

8  5  45  1.035  2  

9  5.6  45  1.035  2  

10  7  61  1.046  3  

11  6  50  1.04  2  

12  6  42  1.032  3  

 

Overall, the physiochemical parameters of a strawberry fruit are influenced by an array of factors, encompassing 

genetics, environmental conditions, and post-harvest handling practices. Effective management of these factors is 

instrumental in optimizing strawberry fruit quality and consistency. The following section delves into a detailed 

exploration of the considered physiochemical parameters, including Brix, salinity, specific gravity, and pH, and 

their acquisition, tabulation, and analysis, particularly in relation to the target variable, Brix. 
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The Brix scale (°Bx) has long been employed in various industries, including wine, sugar, fruit, and honey, to 

quantify sucrose content, often referred to as sugar content. The Brix unit is used to measure the refractive index 

of solutions, with the refractive index of pure water conventionally designated as the baseline (assigned a value of 

"0"). This baseline provides a reference point for determining the optimal ripeness stage for fruit harvesting. Brix 

values are commonly measured using a Brix (°Bx) refractometer, and the relationship between the Brix scale and 

sucrose concentration is defined as 1°Bx = 1% Brix, making it a unit for quantifying the mass percentage of a 

liquid. Sweetness in fruit is assessed by measuring the percentage of sugar expressed in degrees Brix (°Brix) 

through soluble solids in the juice.  

 

The study involved various physiochemical measurements, including Brix, salinity, specific gravity, and pH. 

Salinity was measured using a salinity refractometer with a scale ranging from 0-100 PSU (practical salinity unit), 

while specific gravity ranged from 1.000 to 1.070, representing the fruit's density compared to water. All 

instruments were initially calibrated using distilled water, with temperature and pressure also recorded.  

 

The pH values of the strawberries were determined to assess their acidity. Fruits with pH values less than 7 were 

considered acidic, while those above 7 were alkaline. The acidity increases with decreasing pH values. This 

measurement was conducted by pressing firmly cut strawberry pieces against pH paper strips, and the color change 

of the paper strip indicated the pH value. This information was tabulated for each strawberry.  

 

After gathering the instrumental dataset parameters from 150 strawberry samples, scatter plots were created to 

explore the relationships between the predictor variables (salinity, specific gravity, and pH) and the response 

variable (Brix). These scatter plots provided valuable insights into the associations between these parameters. 

While salinity and specific gravity exhibited linear relationships with Brix, pH levels showed distinct vertical lines 

at values of 2, 3, and 4, suggesting only a notable correlation between pH levels and the perceived sweetness of 

strawberries.  

 

 

3.4 Proposed Method 

 

The acquired dataset parameters from 150 strawberry samples were saved in tabular form and imported into Matlab 

for further processing. To prepare the data for machine learning, several preprocessing steps were applied. These 

included data normalization to ensure that all features were standardized to a common scale, preventing any single 

feature from having undue influence. Feature engineering techniques were employed to create interaction 

parameters from the physiochemical measurements [32]. These interactions captured nonlinear correlations and 

relationships among the variables, enhancing the model's predictive capabilities. To identify the most influential 

features for predicting Brix values, a correlation-based feature selection (CFS) method was utilized. This method 

computes the correlation between each feature and the Brix values. The top 25 features with the highest correlation 

scores were selected for further analysis. These features included a combination of physiochemical measurements, 

derived interaction parameters, and histogram based-color features.  

 

The research process commenced with the implementation of various regression models for predicting Brix values 

in strawberries, aiming to identify the model that offers superior accuracy and reliability. Comparative analysis of 

these models unveiled the Exponential GPR model as the optimal choice, boasting a minimal RMSE of 0.57441 

and a coefficient of determination (R-squared) value of 0.78 during training. This signifies the model's exceptional 

ability to capture and predict the sweetness of strawberries. Table 3 serves as a valuable reference for assessing 

the performance attributes of the different regression models, including training time, RMSE, MSE, R-squared, 

and MAE. The selection of the Exponential GPR model was based on its outstanding performance metrics, further 

highlighting its potential for practical applications. 

 

 

Table 3. Comparison of various trained regression models’ statistics using our dataset 

 

Sl.  

No.  

 Regression Model  Training 

Time (sec)  

RMSE  MSE  R-

Squared  

 MAE 

1  Linear  Regression  23.483  0.93444  0.87317       0.42  0.62271  

2  Linear SVM  24.5859  0.86687  0.75146       0.50  0.61913  

3  Boosted Trees Ensemble  9.2808  0.73195  0.53575       0.64  0.56385  
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4  Fine Tree  15.6883  0.66667  0.44445       0.71  0.50208  

5  Gaussian Process 

(Exponential)  

11.559  0.57441  0.32994       0.78  0.35286  

 

To gain deeper insights into the model's performance, we utilized visualizations such as response plots as illustrated 

in Fig. 5 and actual vs. predicted Brix plots as shown in Fig. 6. These visual aids provide an intuitive understanding 

of the model's behavior and how well it aligns with the ideal regression model. The Exponential GPR model 

consistently demonstrated its capability to predict Brix values closely in line with actual measurements. 

 

 
 

 

Fig.5: Response plot of training samples of the Exponential GPR model 

 

 

 
 

 

Fig.6: Actual vs predicted brix plot of training samples of the Exponential GPR model 

 

 

Once the Exponential GPR model was identified as the best performer, it was exported for deployment in practical 

scenarios. This model, leveraging an Exponential kernel function and a constant basis function, embodies GPR, a 

non-parametric, Bayesian approach with a unique capability to evaluate prediction uncertainty and excel even with 

limited datasets.  
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The research then shifted its focus to the rigorous testing and validation of the Exponential GPR model. For this, 

the remaining mutually exclusive dataset, which was reserved for testing purposes, was utilized. Below is the code 

used for testing the model in Matlab.  

 

YPred = trainedModel.predictFcn(Test_Data); 

 

The prediction performance of the model was then evaluated, which is discussed below in detail.  

4.0 RESULTS AND DISCUSSION 

 

The remaining 30% of the dataset, designated as the 'test dataset,' served as the basis for evaluating the model's 

predictive prowess. The 'predict' function in Matlab facilitated the prediction of Brix values for the test dataset, 

and the results were meticulously recorded in a 'RESULTS' Table 4 as given below. 

 

 

Table 4:  RESULTS table: Actual vs. predicted brix values of a few samples  

 

Strawberry ID  Actual BRIX    Predicted BRIX  

'3.png'  7.50000000000000  7.49713350055414  

'5.png'  8.90000000000000  8.89728907768484  

'10.png'  7  7.17207262164017  

'11.png'  6  5.99990997796704  

'15.png'  7  6.99996529664081  

'18.png'  6  6.00001601506904  

'23.png'  6.90000000000000  6.91743320434474  

'27.png'  4.90000000000000  4.90006676491666  

'31.png'  4.90000000000000  4.89982462541431  

'32.png'  7  6.99954288901365  

'33.png'  6.90000000000000  6.82601379657835  

'35.png'  4  4.44720437722777  

'46.png'  5.70000000000000  5.69990758026706  

'50.png'  8  7.99969762932555  

'51.png  6.20000000000000  6.19974947527340  

 

 

The assessment of the model's efficacy was carried out by computing various statistical parameters, including 

MAE, MSE, RMSE, and MAPE. These metrics served as quantitative indicators of the model's predictive accuracy 

and reliability. The calculated MAPE value of 1.2169 and the impressive Acc rate of 98.7831% underscored the 

model's remarkable ability to predict Brix values with precision. These findings confirm that the model's 

predictions closely align with the actual Brix values, instilling confidence in its applicability for assessing 

strawberry sweetness.  

 

The research did not stop at model selection and validation. It delved into feature engineering, demonstrating how 

the incorporation of a modified dataset, derived from normalized values of the acquired dataset, significantly 

enhanced the model's predictive capabilities. This process added relevance and precision to the model's predictions, 

a testament to the importance of feature engineering in machine learning applications.  

 

The analysis extended to data visualization, which played a pivotal role in understanding the model's behavior. 

Scatter plots (Fig. 7), line plots (Fig. 8), and histograms of residuals (Fig. 9) were employed to gain insights into 

patterns, trends, and the model's overall performance. These visualizations provided a tangible means of assessing 

model assumptions and behavior.  
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Fig.7: Scatter plot of actual vs predicted brix output 

 

 

 
 

 

Fig.8: Line plot of actual vs predicted brix output 
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Fig.9: Histogram of residuals plot 

 

 

Finally, the research culminated in a comparative analysis, pitting the proposed Brix prediction system against 

existing algorithms in the literature. Two key studies, one on grape sugar content prediction [25] and the other on 

strawberry quality prediction [33], served as benchmarks for comparison. The results showcased the superior 

performance of the proposed model, indicating higher R-squared values and a lower RMSE, further validating its 

effectiveness in assessing internal quality parameters. 

 

The performance of the proposed method that predicts the Brix values of strawberries using the modified dataset 

generated from the normalized values of the acquired dataset can be compared with existing algorithms in the 

literature that predict the total soluble solution in strawberry juice. Brix levels and total soluble solids are internal 

quality metrics that provide vital insight into strawberries' sweetness and general quality. While Brix readings 

show the sugar concentration of fruit juices, total soluble solids include all dissolved solids, including sugars, 

organic acids, and other substances. Since these parameters share a fundamental connection in assessing the 

internal quality of strawberries, both algorithms can be compared for better performance. 

 

As referred to earlier, the study mentioned in [25] aimed to develop and compare four distinct machine learning 

techniques, namely ridge regression, partial least squares, neural networks, and convolutional neural networks, for 

the purpose of predicting the sugar content in grapes. This parameter is widely recognized as a key indicator of 

grape maturity. This study primarily examined the generalization capacity of various vintages and varieties that 

were not included in the training model. The prediction errors obtained by each method fell within acceptable 

ranges, indicating that the overall performance achieved was highly satisfactory in terms of robustness. Moreover, 

the findings of this study demonstrate that the suggested one-dimensional convolutional neural network (1D CNN) 

structure can effectively be utilized for the estimation of sugar content in wine grape berries. The 1D CNN 

outperforms the alternative approaches of ridge regression, partial least squares, and neural networks in terms of 

performance. 

 

In a work developed by Jayanta Kumar Basak et al. [33] in 2022, the determination of internal quality parameters 

like soluble solids (TSS in 0Brix) and pH in strawberry cultivation was performed. Their primary goal was to 

create a nondestructive method using a machine learning algorithm to predict TSS and pH in strawberries. A 

hundred samples from different ripening stages were taken randomly for dataset creation using biometrical features 

such as length, diameters, weight, TSS, and pH values. Using an image processing approach, an image of each 

strawberry fruit was collected for color feature extraction. Multiple linear regression (MLR) and support vector 

machine regression (SVM-R) models were developed using RGB, HSV, and HSL channels as input variables. 

Two statistical metrics, RMSE and R2, were used to assess the performance of both models. The study found that 

the SVM-R model using HSV color space performed marginally better than the MLR model for TSS and pH 

prediction. The HSV-based SVM-R model, which is considered the best model for their dataset, could explain a 

maximum of 84.1% and 79.2% of the variances in the measured and predicted TSS (0 Brix) data, respectively. 

 

The present study compares the performance measures, specifically the coefficient of determination (R2p) and 

RMSE, attained by the most effective methods outlined in the references [25] and [33] for predicting the Brix 

values of Port Wine grapes and the Total Soluble Solid Content of Strawberries (internal quality parameter), 

respectively. These measures are then contrasted with the Brix value prediction algorithm proposed in this study, 

as depicted in Fig. 10. As it is known, R-squared (coefficient of determination) is a measure of a regression model's 

goodness of fit. A higher R-squared value indicates a better fit of the model to the data. Similarly, RMSE is a 

measure of the deviation of predicted values from the true values, with a lower RMSE indicating better 

performance. The below graph plot shows that our proposed regression technique outperformed other models in 
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terms of a higher R2 value and a lower RMSE for internal quality prediction of strawberry extract during the 

prediction phase. 

 

 

 
 

 

Fig.10: Comparison of performance of the proposed brix prediction system with other prediction 

systems in literature [25], and, [33] 

 

 

This research successfully leveraged a fusion of physiochemical and color-based features, coupled with advanced 

machine learning techniques, to enhance the prediction of Brix values in strawberries. The Exponential GPR model 

emerged as the optimal choice, offering precision, reliability, and practical applicability.   

 

Additionally, Recurrent Neural Networks (RNNs) and their variants like Long Short-Term Memory (LSTM), 

Bidirectional Long Short-Term Memory (BiLSTM), Gated Recurrent Unit (GRU), Bidirectional Gated Recurrent 

Unit (BiGRU) etc. were implemented using these input features and the results obtained are displayed in Table 5 

below [34]. The training and testing data were created by extracting features from the fusion dataset, which 

consisted of histogram-based color picture characteristics, physiochemical data, and interaction parameters. 

 

 

Table 5:  Performance metrics table of the test samples using variants of RNNs 

 

 

RNNs are used to do regression tasks, particularly predicting the Brix values based on input features. A customized 

RNN model was developed for the purpose of regression analysis. The model's particular objective was to 

accurately forecast Brix values by using the collection of input characteristics. The process started with data 

preparation, whereby input features and associated target variables were retrieved from both the training and 

testing datasets. The RNN architecture was built by combining one input layer, two fully linked hidden layers, and 

a regression output layer. Significantly, the second concealed layer integrated recurrent connections. The training 

process was streamlined using the Adam optimization method. This involves providing parameters such as the 

MODEL MSE RMSE MAE R-SQUARED MAPE Acc 

RNN 0.5543 0.744 0.6214 0.6953 0.1168 99.88% 

LSTM 0.7284 0.853 0.6443 0.5997 0.1172 99.88% 

BiLSTM 0.6995 0.836 0.6343 0.6155 0.1119 99.89% 

GRU 0.7038 0.838 0.6026 0.6132 0.1017 99.90% 

BiGRU 0.8762 0.936 0.7081 0.5184 0.1197 99.88% 
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maximum number of epochs and the mini-batch size. After completing training, the model was deployed to make 

predictions of Brix values for the testing dataset. The predictions were then assessed to evaluate the model's 

performance and efficacy in capturing the underlying connections between the input characteristics and target 

variables whose performance metrics values are given in above table. 

 

An LSTM model was used to forecast Brix levels using the input features. The LSTM architecture was designed 

with layers that are specially customized for processing sequence data. The input layer was initialized with the size 

of the input features, followed by an LSTM layer with a specific number of hidden units, which was set up to 

produce sequences as output. Afterwards, a fully connected layer was used to provide regression output, which is 

then followed by a regression layer to calculate the loss. The layer configuration is structured in a layer graph, 

which acts as the plan for the LSTM model. The training process utilizes the Adam optimization method, including 

specific parameters such as maximum epochs and mini-batch size that are specified in the training options. The 

model is trained using the given training data. After being trained, the LSTM model is used to forecast Brix values 

for the testing dataset. Subsequently, the predictions are subjected to further analysis and review to assess the 

model's ability in making accurate predictions as displayed in Table 5. 

 

A BiLSTM model was used to forecast Brix values using the input features. The design has a sequential input 

layer, which is then followed by a BiLSTM layer with a predetermined number of hidden units. The output layers 

consist of a fully connected layer that produces regression output and a regression layer that calculates the loss. 

The training process utilizes Adam optimization with predefined parameters, while the progress is tracked using 

validation data. After being trained, the model uses the testing dataset to make predictions of Brix values. The 

performance of the model is then assessed using several metrics including MAPE, Acc, R-squared, MSE, RMSE, 

and MAE. These metrics provide valuable information about the model's Acc and its ability to accurately represent 

the variability in the Brix values. These performance measures are displayed in Table 5. 

 

The implementation of the GRU model for forecasting Brix values included setting the input size according to the 

dimensions of the training data. Additionally, a sequence input layer was provided to handle the input 

characteristics. The GRU layer was configured with 100 hidden units to effectively capture intricate patterns within 

the data. A singular output class was constructed for the regression job. The training process used the Adam 

optimization method, using a maximum of 100 epochs and a mini-batch size of 32. To mitigate the issue of bursting 

gradients during training, a gradient threshold of 1 was implemented. Additionally, the initial learning rate was 

adjusted to 0.01. At each epoch, data shuffling was carried out to guarantee resilient training. Validation data was 

used to monitor the performance of the model, and the progress of the training was represented using plots. 

Following the completion of training, the model produced predictions on the test dataset. To evaluate the model's 

performance, many metrics were computed, including MAPE, Acc, R-squared, MSE, RMSE, and MAE as given 

in Table 5. 

 

The Brix prediction model was constructed using the BiGRU architecture, which adhered to the following 

specifications: The input and output sequences were arranged, and the BiGRU architecture was established 

utilizing a sequence input layer, followed by forward and backward GRU layers with 100 hidden units each. A 

depth concatenation layer merges the outputs of the forward and backward GRU layers, which are then sent 

through a fully connected layer to provide regression output. The training parameters were configured using Adam 

optimization, with a maximum of 100 epochs, a mini-batch size of 32, and an initial learning rate of 0.01. The 

model underwent training, and then generated predictions on the test data. The model's performance was assessed 

by computing evaluation measures as displayed in Table 5. 

 

Upon evaluating the results of the ML model and the DL models on the strawberry dataset, it is clear that both 

approaches demonstrated exceptional performance with high accuracy and low error rates. The GPR model has 

given strong performance, with an Acc of 98.783% after testing. These results indicate that the model has excellent 

predictive potential. Additionally, the DL models exhibited impressive accuracy, with the RNN obtaining a 

remarkable Acc rate of 99.88%. Similarly, RNN variants like LSTM, BiLSTM, GRU, and BiGRU displayed 

similarly high performance. 

 

5.0 CONCLUSION AND FUTURE WORK 

 

Our study underscores the significant advancements that automation and machine learning have brought to the 

agricultural sector. We have successfully developed a robust automation model that predicts Brix values in 

strawberries with an impressive testing Acc of 98.7% using a machine learning model and Acc above 99% using 

deep learning models with lower error rates. The GPR model gave a very satisfactory performance, achieving an 
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Acc of 98.783% after testing. These findings demonstrate a high level of predictive capability. In addition, the 

deep learning models gave exceptional accuracy, with the RNN achieving an outstanding Acc rate of 99.88%. 

Similarly, other variants such as LSTM, BiLSTM, GRU, and BiGRU have also shown notably superior 

performance in terms of accuracy and other performance metrics. Leveraging a unique dataset encompassing 

various predictors and advanced feature selection techniques, our model demonstrates exceptional precision in 

assessing the sweetness and maturity of strawberries, a vital factor for growers and stakeholders in the strawberry 

industry. This research not only contributes to the field of agricultural research and quality control but also provides 

valuable tools for enhancing product quality and minimizing wastage.  

 

Looking ahead, there are exciting prospects for future work. Expanding the feature set to include environmental 

and weather data could offer a more comprehensive view of fruit quality. Developing dynamic models that adapt 

to changing conditions in real-time could revolutionize farming practices. Additionally, extending this 

methodology to other crops and commodities could have a broad-reaching impact on agriculture. As we continue 

to refine and expand upon these findings, we have the potential to further optimize farming processes, improve 

product quality, and contribute to a more sustainable and efficient agricultural sector.  
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