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Abstract  

 

This study explores how gene expression data can help predict the survival times 

of colon cancer patients. Since the dataset is high-dimensional, Principal 

Component Analysis (PCA) reduces complexity while retaining essential 

information. Based on eigenvalue one criteria, proportion of variance accounted 

for, and scree plot analysis, 60 principal components (PCs) are selected as 

covariates. These are then used in a Proportional Hazard Mixture Cure Model, 

applying both Cox and Weibull as baseline models to differentiate between cured 

and uncured patients over a five-year follow-up period. Maximum Likelihood 

Estimation (MLE) is applied to estimate the model parameters. The results show 

that the Cox model provides more reliable estimates, indicated by lower AIC 

values, higher hazard rates, and statistically significant p-values (<0.05). On the 

other hand, the Weibull model finds no significant covariates (p-values >0.05), 

with only the intercept being significant. Furthermore, the Weibull model estimates 

a 100% cure rate, while the Cox model estimates 56%, suggesting that the Cox 

model provides a better fit for predicting survival outcomes. By integrating gene 

expression data into survival modeling, this study offers a more accurate and 

interpretable way to understand patient outcomes. The findings highlight the Cox 

mixture cure model as a valuable tool for guiding clinical decisions. 

 

Keywords: Cox model, Mixture cure fraction model, Principal components, 

Proportional hazard model, Weibull model 

 

   

1. Introduction 

 

Survival analysis is crucial in understanding the prognostic factors affecting cancer patients' outcomes. 

Gene expression data offers a rich source of information but poses challenges due to its high 

dimensionality. Colorectal cancer is the third most common cancer worldwide with an estimated death 

of 930,000 in 2020 (Morgan et al., 2023), yet one of the cancer cases involving high dimensional 

microarray data in molecular and genetic biology, where the sample size is usually in the hundreds, with 

tens of thousands of genes (Al-Thanoon et al., 2018);(Algamal et al., 2018). Multicollinearity and 

overfitting are significant challenges when applying statistical classification and feature selection 
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methods to high-dimensional datasets, consequently, making it trivial in model selection and 

classification. An unsupervised machine learning algorithm approach called principal component 

analysis (PCA) is one of the techniques that can be employed to measure the dimensionality of 

covariates. Though many studies used PCA in high dimensional microarray data (Lenz et al., 

2016);(Razzaque & Badholia, 2024). Its application while putting into cognizance the three major 

approaches (Scree plot, Eigenvalue-one-criterion and proportion of variance accounted for) is essential. 

The main idea of using PCA is to reduce the dimensionality of data whose variables are interrelated 

(Gewers et al., 2022) into a set of uncorrelated variables that successively maximize variability (i.e. 

statistical information) without losing information from the datasets.  

Early cancer detection using gene expression data is crucial for quality patient care. Accurate data 

analysis is essential to avoid misdiagnosis and its associated risks. The high dimensionality of gene 

expression datasets, with numerous features per gene, requires substantial computational resources and 

can introduce multicollinearity issues (Das et al., 2024). Due to the importance of these issues, efficient 

and effective techniques are required to improve the classification accuracy and the selection of a small 

subset of genes appropriately. However, the PCA effectively addresses multicollinearity by creating 

orthogonal variables that capture most data variance. The Eigenvalue-one–criterion method of the PCA 

significantly helps assess multicollinearity, with values greater than 1 suggesting the retention of 

principal components (Kyriazos & Poga, 2023). Moreover, reducing the gene expression to a significant 

dimension will lead to an easy discovery and diagnosis of patients affected with the cancer disease 

(Hossain et al., 2019); (Ding et al., 2021).  

The event of interest in this study is clearly defined as death from colon cancer. This means the 

study focuses on observing and analyzing the time from diagnosis to the occurrence of death specifically 

caused by colon cancer. Patients who do not experience this event within the 5-year follow-up period 

are considered censored, meaning their exact survival time is unknown, but it is known to exceed the 

duration of their follow-up. By modeling this event, the study aims to predict survival probabilities and 

survival times using gene expression data as covariates. Both cured patients (those who survive beyond 

5 years without death from colon cancer) and uncured patients (those who experience the event) are 

accounted for in the analysis using mixture cure models. 

Furthermore, after properly selecting the relevant covariates for the estimate, the next is to model 

the survival probability by an appropriate model that could better fit the dataset, accurately representing 

a relationship between the covariates and the survival time of the colon cancer patients. In this research, 

a maximum likelihood estimation MLE technique was later employed to maximize the parameters of 

the statistical models. Recently, (Badisy et al., 2023) evaluated Morocco's colorectal patients' overall 

survival rates at 3 years and, using a novel method that combined survival random forest with the Cox 

model, revealed strong predictive indicators. Moreover, (Atinafu et al., 2020) assessed the survival 

status and predictors of mortality among colorectal cancer patients using Kaplan–Meier analysis with a 

log-rank test and bivariate and multivariable analysis through the Cox proportional hazard model. 

Moreover, (Xie et al., 2024)used univariate, Lasso, and multivariate Cox regression models to create an 

immune-related lncRNA signature, followed by constructing a nomogram in R to predict survival in 

colorectal cancer patients. Furthermore, (Bai et al., 2020) applied univariate Cox regression analysis to 

examine the association of immune-related genes with the prognosis in patients with colorectal cancer. 

However, despite extensive research on additive risk and Cox models, linear regression survival 

models for high-dimensional microarray data, particularly for right-censored data, are still rare. This 

study proposes using Cox (semi-parametric) and Weibull (parametric) models as baselines to model the 

survival time and probability of colon cancer patients, where the event of interest is death. In this 

research, the event of interest is death, specifically among individuals who succumbed to colon cancer 

after being diagnosed with the disease. In contrast, the patients who do not experience this event within 

the 5-year follow-up period are considered censored. These models will be integrated with a mixture 
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cure fraction model to account for cured patients. The study aims to identify the best methodology for 

modeling survival time by comparing these approaches, focusing on dimensionality reduction, and 

applying advanced survival models using gene expression data as covariates. 

 

2. Materials and methods 

 

2.1 Data collected and Filtering 

 
The dataset comprises gene expression profiles of 2,000 genes from a heterogeneous sample of 62 colon 

cancer patients, originally collected by (Alon et al., 1999). Among these patients, 40 had tumor tissues, 

while 22 did not, whose samples were from non-tumorous regions of the colon in the cancer patients, 

making it a complete time-to-event data. The data was sourced from the Microarray Databases site 

compiled by the Princeton University Gene Expression Project (2002), from patients with a 

comprehensive medical report and diagnosed with colon cancer. The data is normalized afterward by 

scaling and filtering using a variance threshold of 0.5, removing any column with zero variance, and 

performing Principal component analysis to reduce the dimension of the data set using the ‘princomp 

()’ functions in R studio software. The diagnosis and the general survival time were not explicitly 

mentioned in the data, therefore the research adopted a simulation-based technique, like that of (Bender 

et al., 2005); (Infante et al., 2023); (Rutter et al., 2023)to simulate a sufficient survival time of the 

patients for a follow-up period of 5 years, which is from 0 times to 5 years, which is approximately 60 

months. 

In contrast to (Alon et al., 1999), The survival time in this study is defined as the time from 

diagnosis to death from colon cancer. The study specifically models the survival probabilities of colon 

cancer patients using gene expression data as covariates, with the event of interest being death due to 

colon cancer. Moreover, the research specifically indicates right-censored observations, which account 

for the subjects who did not experience the event of interest, that is death from colon cancer. In this 

research, patients who do not experience the event of interest (death from colon cancer) or are lost to 

follow-up within 5 years are considered censored, indicating that their exact survival times are unknown 

but exceed the observed follow-up duration. 

In this study, the colon tissue samples from 62 patients (Alon et al., 1999) were analyzed, guided 

by the principles of the Central Limit Theorem (CLT) (Abraham De Moivre, 1733). The CLT states 

that, regardless of the original data distribution, the sampling distribution of the sample mean (or other 

statistics) will approximate a normal distribution when the sample size is moderately large, typically 

between 30 and 50, even if the data is slightly skewed. This property enables reliable statistical inference 

for population-level insights. Although the sample size is sufficient under this framework, 

dimensionality reduction is crucial to ensure model stability, prevent overfitting, and derive meaningful 

statistical conclusions. 

 

2.2 Dimension Reduction Using PCA 

 
In this research, the principal component analysis technique (Pearson 1901) is used to reduce the 

dimensionality of the colon gene expression data while preserving as much variability as possible. The 

original correlated variables are transformed into a set of uncorrelated variables that are a linear 

combination of the original gene expression, called principal components (PCs), serving as covariates. 

Sixty (60) PCs were retained to account for most of the variation from the 2000 gene expressions of 62 

patients.  
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2.3 Performing PCA analysis 
 

Data presentation 

 

The gene expression data in Matrix X form (patient’s X gene expression): 

                                                                                                       (2.1) 

The survival data is; 

      

                                                                                                                                        (2.2)                

 

Data Standardization  

 

Standardization to make each feature (gene) have zero mean and unit variance, 

 

a. Mean Vector Calculation:    

                                𝜇𝑖 =
1

𝑛
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𝑛

𝑖=1

                                                                                        (2.3) 

 

where 𝑛 is the number of samples which is 62 in this case, and  𝑋𝑖𝑗is the expression level of gene 𝑗 and 

sample 𝑖. 

 

b. We subtract the mean from each element in the corresponding column: 

                                                                                                                                   (2.4) 
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c. Standardize the data: 

                 (2.6) 

 

d. we compute the standard deviation for each gene expression as follows: 

                                                                                                              (2.7) 

 

Variance-covariance 

 

Let X   be the 62 × 2000 matrix of the standardized gene expression dataset and compute the variance 

matric C as follows: 

                                                                                                             (2.8)   

   

where n is the 62 samples of the gene expression of 2000 dimension. 

 

• Transpose of the centered Matrix  𝑋𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑
𝑇  

                                              (2.9)  

 

• Matrix multiplication 

   (2.10) 

 

• Normalization by 𝑛 − 1: 

 (2.11)   
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Eigenvalues and Eigenvectors for the covariance Matric C: 

               (2.12) 

 

which expands to 

                                                                                    (2.13) 

 

Principal Components scores:  

                                                                    (2.14) 

 

which expands to 

                                          (2.15) 

 

where V here is the eigenvectors for the 2000 dimension. The first element 𝑍11 is computed by the row 

and column variables as follows 

                                                                                    (2.16) 

 

Similarly, the computation continues for the other elements for each row and column. Hence, the 

element 𝑧𝑖𝑗  of matrix Z is computed as: 

                                                                                                                        (2.17) 

      

For the entire principal components, each entry in Z is a dot product between the 𝑖 − 𝑡ℎ row of the 

𝑋𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑  and the 𝑗 − 𝑡ℎ column of V.  However, it is generally not feasible to do PCA manually, 

in this research the ‘princomp’ function in R studio software was used to compute the principal 

components.               

 

2.4 Cox Proportional Hazard Mixture Cure Fraction Model 
 

The Cox proportional hazards mixture cure fraction model is used to analyze the survival data of the 

colon patient with the genes retained as the covariates (PCs) when a fraction of the population is 

assumed to be cured, meaning they will not experience the event of interest (death). This model 

incorporates the survival function for uncured patients and the probability of being cured. 
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2.5 Model Formulation for the Cox Proportional Hazard Mixture Cure Fraction Model 

 

• Derivation with the PCs as the covariates 

 

Let X = (PC1, PC2, ……..., PC60)
 T be the vector of 60 PC derived from the gene expression data. We 

incorporate the principal components (PCs) into the model as covariates. The Cox proportional hazard 

function for the uncured patients can be written as: 

                                          (2.18)           

 

where  ℎ0 (𝑡)  is the baseline hazard function of the event over time, independent of the patient-specific 

covariates, X is the vector of the principal components (PC𝑖), that is the covariates, and 𝛽𝑖 is the vector 

of the regression coefficients. 

The Cure fraction with logistic regression is given by the following expression: 

                                                            (2.19)  

 

𝜋(𝑋) is the probability of being cured, 𝛾𝑖  is the vector of the coefficient for the cure fraction model.  

Survival function for uncured patients is given by:      

                                                                                              (2.20)  

   

𝑆 (
𝑡

𝑋
) represents the probability that the colon cancer patient will survive beyond time t, 𝐻0(𝑡) the 

cumulative hazard when all X covariates are equal to zero, and 𝛽𝑖 is the vector of the regression 

coefficients corresponding to each covariate, while the overall survival function can be written as: 

          (2.21)    

 

where ℎ (
𝑡

𝑋
)  describes how the hazard of colon cancer changes over time for the patients who are not 

cured, considering the effects of the principal components (covariates), 𝜋 (𝑋) represents the probability 

of the patients being cured influenced by the covariates i.e. the gene expressions retained as the (PCs). 

The log-likelihood function combines contributions from uncensored (event) and censored observations 

for right-censored data. We let 𝛿𝑖 be the event indicator (1 if the event occurred, 0 if censored) for the 

𝑖 − 𝑡ℎ individuals. 

The log-likelihood contribution for the 𝑖𝑡ℎ individuals is given by 

                                              (2.22) 
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The overall log-likelihood which is the sum of individual log-likelihood is shown below: 

                                                                                                                                                  (2.23) 
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2.6 Model Formulation for the Weibull Proportional Hazard Mixture Cure Fraction 

Model 

 

• Derivation with the PCs as the covariates 

 

Let X = (PC1, PC2, ……..., PC60) T be the vector of 60 PC derived from the gene expression data. We 

incorporate the principal components (PCs) into the model as covariates. 

Weibull proportional hazard function for uncured patients is given by; 

                                                                                                   (2.25) 

 

where ℎ0(𝑡𝑖) is the baseline Weibull hazard function of the event over time, X is the vector of the 

principal components (PC𝑖), that is the covariates, and 𝛽𝑖  is the vector of the regression coefficients.  

                                                                                                                               (2.27) 

 

where a shape parameter K > 0 and a scale parameter λ > 0 parameterize the Weibull distribution. 

Thus,                       

                                                                                                     (2.28) 

 

is the cure fraction, 𝜋(𝑋),  modeled using the logistic regression function as shown below: 

                                                                                                             (2.29) 

 

The survival function for uncured patients is:  
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Therefore, the overall survival function, 𝑆 (
𝑡

𝑋
), becomes: 

                                                                                              (2.33) 

 

where 𝜋(𝑋) is the probability of being cured, (1 − 𝜋(𝑋))𝑆𝑢(𝑡/𝑋), is the survival function for the 

uncured individual colon patients. We substitute the expression for 𝜋(𝑋) and 𝑆𝑢 (
𝑡

𝑋
) becomes: 

           (2.34) 

 

The log-likelihood function combines contributions from uncensored (event) and censored 

observations for right-censored data. We let 𝛿𝑖 be the event indicator (1 if the event occurred, 0 if 

censored) for the 𝑖 − 𝑡ℎ individuals, and 𝑡𝑖  is the observed survival time of the patients. The log-

likelihood contribution for the 𝑖 − 𝑡ℎ individual is: 

                                        (2.35) 

 

Substituting the expression for ℎ (
𝑡

𝑋
)  and  𝑆 (

𝑡

𝑋
): 

    (2.36) 

 

The overall log-likelihood is given by 

                                                                , 

and can also be written as  

(2.37)                 

 

3. Results 

 
The following result, table 1 provides the principal components derived from the PCA, including their 

Eigenvalues, the percentage of variance they individually explained, and the cumulative percentage of 

the variance. The output suggests selecting the first 60 principal components considering the eigenvalue-

one criterion approach. The approach indicates that retaining components with eigenvalues > 1 can 

replace the 2000 gene expression covariates with a reduced number of components while sacrificing 

only a negligible amount of information about the total variation in the system. The higher eigenvalues 

indicate that the component explains a larger proportion of the variance in the data. However, by the 

proportion of variance accounted for approach, we are to retain the PCs to the cumulative % of variances 

from 70 to 90%. 
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Table 1. Proportion of Total Variance Explained by Each Principal Component 

Component 
Initial Eigenvalues 

(total) 

% of 

variance 

Cumulative % of the 

variance 

1 899.113 44.956 44.956 

2 196.925 9.846 54.802 

3 135.301 6.765 61.567 

4 113.104 5.655 67.222 

5 65.669 3.283 70.506 

6 62.582 3.129 73.635 

7 46.638 2.332 75.967 

8 44.354 2.218 78.184 

9 33.342 1.667 79.851 

10 31.05 1.553 81.404 

11 27.666 1.383 82.787 

12 24.135 1.207 83.994 

13 20.824 1.041 85.035 

14 19.465 0.973 86.008 

15 16.915 0.846 86.854 

16 15.726 0.786 87.64 

17 15.485 0.774 88.415 

18 13.327 0.666 89.081 

19 12.627 0.631 89.712 

20 11.762 0.588 90.3 

21 11.042 0.552 90.853 

22 10.495 0.525 91.377 

23 9.952 0.498 91.875 

24 9.623 0.481 92.356 

25 9.124 0.456 92.812 

26 8.279 0.414 93.226 

27 8.149 0.407 93.634 

28 7.669 0.383 94.017 

29 6.999 0.35 94.367 

30 6.651 0.333 94.7 

31 6.356 0.318 95.017 

32 6.04 0.302 95.319 

33 5.848 0.292 95.612 

34 5.78 0.289 95.901 

35 5.405 0.27 96.171 

36 5.062 0.253 96.424 

37 4.904 0.245 96.669 

38 4.674 0.234 96.903 
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39 4.342 0.217 97.12 

40 4.234 0.212 97.332 

41 3.972 0.199 97.53 

42 3.868 0.193 97.724 

43 3.679 0.184 97.908 

44 3.577 0.179 98.087 

45 3.49 0.175 98.261 

46 3.335 0.167 98.428 

47 3.186 0.159 98.587 

48 3.077 0.154 98.741 

49 2.775 0.139 98.88 

50 2.692 0.135 99.014 

51 2.57 0.128 99.143 

52 2.457 0.123 99.266 

53 2.209 0.11 99.376 

54 2.13 0.106 99.483 

55 1.953 0.098 99.58 

56 1.84 0.092 99.672 

57 1.648 0.082 99.755 

58 1.597 0.08 99.835 

59 1.289 0.064 99.899 

60 1.17 0.058 99.958 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Plot view of the Two-dimensional PCs for the gene expression data of the colon cancer 

patients 

https://doi.org/10.22452/josma.vol7no1.4


Suleiman et al. / https://doi.org/10.22452/josma.vol7no1.4         Vol 7(1), 32-53. 2025 

 

43 
 

Figure 1 represents the visual image of the principal components plot with the x-axis representing 

the first principal component (PC1), which accounts for 44.93% of the total variance in the data. This 

suggests that PC1 captures a substantial portion of the variability among the gene expression samples. 

The second (PC2) follows accounting for 9.84% of the total variability capturing less variation than the 

(PC1). However, since the 2D plot suggests retention of too few PCs, we employ alternatives by 

exploration of the Scree-plot, Proportion of variance accounted for, and the Eigenvalue one criterion 

approaches to determine the number of PCs to be retained as our covariates for subsequent analysis. 

 

 
                            (i)                                                                                 (ii) 

 

 

 

 

 

 

 

 

                                                                                                      

 

 

 

(iii)                                                                                          (iv) 

 

 

 

 

                                     (v)                                                                                    (vi)                                                                                                       

  

Figure 2. (i) The scree plot for the suggested principal components is to be retained from the 

Eigenvalues by the percentage of the variances. (ii) The scree plot for the suggested principal 
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components with the cumulative variance of 75.967 % is maintained according to the proportion 

of variance accounted for approach. (iii) The visual hazard plot of the colon cancer patients 

based on the mean values of the extracted principal components from gene expression data. (iv) 

The stepwise hazard function curve is based on the mean values from the principal components 

as covariates. (v) Survival function curve with censoring and covariates. (vi) Hazard function 

curve with covariates and censoring 

 

Figure 2 (i) represents the scree plot of the eigenvalue one criterion suggested by the research 

for a threshold of 75.967 cumulative percentage of the variance for the PCs to be retained by the 

proportion of variance accounted for, with the red-shaded line representing the eigenvalue of 1, 

indicating retention of all eigenvalues > 1 which is a common threshold used to determine the number 

of PCs to retain. This is meant to check for the elbow points on the plot and to visualize if the PCs 

capture a significant proportion of the variance at the 75.967% threshold. The Figure 2 (ii) scree plot 

suggests retaining a single PC as it breaks at a single PC for it retains a variability of 44.93% of the total 

variation and the proportion of variance accounted for suggests retaining 7 number of the PCs as 

covariates for modeling the colon cancer survival periods based on the results in Table 1, but are 

arbitrary, as a result, the approach has sometimes been criticized for its subjectivity [16]. Consequently, 

the research adopted the entire 60 PCs as the covariates retained by the Eigen-value-one criterion 

approach to avoid loss of vital information from the gene expression data that are significant to the colon 

cancer incidence and survival probability. Figure 2 (iii) and (iv) give the general survival rates and the 

hazard rates curves by the influence of the principal components (covariates) accounting for most of the 

variation from the original data source of 2000 dimensions. The Figure 2 (iv) curve illustrates the 

evolution of risk over time, showing the accumulated risk of the event occurring up to a specific time 

point. Moreover, Figure 2 (v) and (vi) curves represent the cumulative survival probability estimate for 

the patients beyond a specific time and the cumulative hazard probability estimate at different times 

throughout the follow-up period respectively with censoring throughout the period. 

 

 
Figure 3.   Scree Plot of Principal Components Retained Using the Eigenvalue > 1 Criterion 

 

The scree plot in Figure 3 gives the graphical presentation of the eigenvalues > 1 retained from 

PCs to represent the entire gene expression of 2000 of the 62 colon cancer patients. The x-axis represents 

the total of 60 principal components accounting for the total variability and the y-axis represents the 

eigenvalues corresponding to each principal component. 
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Figure 4. Scree Plot Showing Cumulative Variance Explained by Principal Components 

 

The Figure 4 plot represents the cumulative variance explained by the principal components with 

the x-axis representing the principal components from 1 to 60 and the y-axis representing the cumulative 

proportion of total variance explained by the principal components, ranging from 0 to 1 (or 0% to 100%) 

from the gene expression colon cancer data. 

 

Table 2. Estimated PCs Associated with High Hazard Rates Using the Cox Proportional Hazard 

Model via MLE 

Principal Component (𝑷𝑪𝒊) Coefficient (𝜷𝒊) Hazard Ratio (exp((𝜷𝒊)) p-value (𝑷𝒊 ) 

PC1 15.16 3.84 X106 <2e-16 

PC2 12.54 3.09X105 <2e-16 

PC3 5.35 210.0 <2e-16 

PC9 2.93 18.89 1.49e-11 

PC12 5.85 347.2 <2e-16 

PC13 3.85 47.16 <2e-16 

PC15 5.89 362.6 <2e-16 

PC19 4.39 80.87 <2e-16 

PC20 3.58 35.97 <2e-16 

PC26 3.49 32.90 <2e-16 

PC27 12.67 3.19X105 <2e-16 

PC28 10.88 5.32X104 <2e-16 

PC30 7.98 2933 <2e-16 

PC31 17.37 3.48X107 <2e-16 

PC34 28.00 1.45X012 <2e-16 

PC36 8.87 7147 <2e-16 

PC40 25.99 1.94X1011 <2e-16 

PC42 4.66 106.2 <2e-16 

PC44 5.78 325.1 <2e-16 

PC50 11.75 1.26X105 <2e-16 

PC52 49.02 1.95X1021 <2e-16 

PC54 57.75 1.20X1025 <2e-16 

PC56 6.85 946.6 <2e-16 

PC57 10.16 25950 <2e-16 

 

           Table 2 shows the 24 PCs with exp (𝛽𝑖)  ≫ 1, showing a stronger association between the PCs 

and the risk of the event from the estimated 60 PCs, indicating a significantly increased hazard. 
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Moreover, explaining that a small increase in the specified PCs could lead to a large increase in the risk 

of the event (death) of the colon cancer patient. The smaller P-values of the PCs also indicate the highly 

significant association between them and the Hazard. Generally, the hazard ratios are substantial (≫ 1) 

indicating that for every unit increase in the 𝑃𝐶𝑖 , the risk of the event (death) increases exactly times 

the number of the Hazard Ratio (exp((𝛽𝑖)) values. 

 

Table 3. Estimated PCs Using the Weibull Proportional Hazard Model via MLE 

Principal Components Coefficient 𝜷𝒊 Std. Error z-value p-value 

Intercept (𝜷𝟎) 3.70750 0.14301 25.93 <2e-16 

PC_1 -0.09026 0.22943 -0.39 0.69 

PC_2 -0.22414 0.15785 -1.42 0.16 

PC_3 0.07874 0.29745 0.26 0.79 

PC_4 0.16433 0.29499 0.56 0.58 

PC_5 -0.01424 0.31675 -0.04 0.96 

PC_6 0.22909 0.21067 1.09 0.28 

PC_7 -0.24532 0.22299 -1.10 0.27 

PC_8 0.07265 0.32247 0.23 0.82 

PC_9 -0.16821 0.36802 -0.46 0.65 

PC_10 0.01931 0.35086 0.06 0.96 

PC_11 -0.02939 0.28513 -0.10 0.92 

PC_12 -0.09068 0.58775 -0.15 0.88 

PC_13 -0.13917 0.40794 -0.34 0.73 

PC_14 -0.03323 0.43157 -0.08 0.94 

PC_15 0.02454 0.13908 0.18 0.86 

PC_16 -0.00111 0.43003 0.00 1.00 

PC_17 0.24757 0.20933 1.18 0.24 

PC_18 -0.11486 0.28182 -0.41 0.68 

PC_19 -0.20698 0.45221 -0.46 0.65 

PC_20 0.24512 0.52662 0.47 0.64 

PC_21 0.02006 0.80824 0.02 0.98 

PC_22 0.03705 0.42479 0.09 0.93 

PC_23 -0.05492 0.21595 -0.25 0.80 

PC_24 -0.03659 0.39387 -0.09 0.93 

PC_25 0.12967 0.36788 0.35 0.72 

PC_26 0.17978 0.45077 0.40 0.69 

PC_27 0.22016 0.36952 0.60 0.55 

PC_28 -0.17726 0.33725 -0.53 0.60 

PC_29 0.07516 0.28726 0.26 0.79 

PC_30 -0.26306 0.64525 -0.41 0.68 

PC_32 0.01172 0.28746 0.04 0.97 

PC_33 0.05052 0.31882 0.16 0.87 

PC_34 0.04446 0.50963 0.09 0.93 
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PC_35 -0.13883 0.12017 -1.16 0.25 

PC_37 -0.15226 0.31282 -0.49 0.63 

PC_38 0.16117 0.32670 0.49 0.62 

PC_39 0.03993 0.31855 0.13 0.90 

PC_40 0.03362 0.61409 0.05 0.96 

PC_41 0.10981 0.23249 0.47 0.64 

PC_42 -0.05350 0.25811 -0.21 0.84 

PC_43 -0.15935 0.32249 -0.49 0.62 

PC_44 -0.07370 0.26484 -0.28 0.78 

PC_45 0.13871 0.66629 0.21 0.84 

PC_46 0.20069 0.34541 0.58 0.56 

PC_47 -0.04556 0.27114 -0.17 0.87 

PC_48 0.01446 0.26437 0.05 0.96 

PC_49 -0.02140 0.25101 -0.09 0.93 

PC_50 0.28416 0.55376 0.51 0.61 

PC_51 0.19285 0.25288 0.76 0.45 

PC_52 -0.00791 0.46210 -0.02 0.99 

PC_53 0.02943 0.16400 0.18 0.86 

PC_54 0.10676 0.53881 0.20 0.84 

PC_55 0.09673 0.12380 0.78 0.43 

PC_56 0.16650 0.22484 0.74 0.46 

PC_57 -0.13708 0.11624 0.24 0,24 

PC_58 0.09441 0.25730 0.37 0.71 

PC_59 -0.00539 0.31708 -0.02 0.99 

PC_60 -0.10365 0.10880 -0.95 0.34 

 

In Table 3, the highly significant intercept (𝛽0) with a coefficient of 3.70750 and a very small p-

value of < 2e-16  represents the baseline hazard (or log-hazard), which is the logarithm of the hazard 

rates when all covariates (PC_1, PC_2, ..., PC_60) are zero with a positive high z-value of 25.93 

indicating that baseline hazard is significantly different from zero. The PC's coefficient (𝛽𝑖) represents 

the log-relative hazard (the natural log of the hazard ratio) associated with the principal components. 

The p-values indicate the statistical significance of each coefficient and the z-value shows the deviation 

of the coefficients away from zero. However, in this model, all the PC’s coefficients have a p-value 

greater than 0.05, and all the std. errors are larger relative to the coefficients leading to smaller z-values 

and higher p-values in all the PCs indicating that they are not statistically significant, suggesting that 

the principal components do not strongly influence the survival time of the colon cancer patients. 
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(i) 

 
(ii) 

Figure 5. (i) Kaplan Meier curve estimating the survival rate of all the groups of patients over 

time (ii) Kaplan-Meier curve with the censoring indicator for all groups of patients over time 

 

In Figure 5 (i), the Kaplan- Meier curve shows the survival probabilities of the groups without 

censoring for all the colon cancer patients with the PC covariates for 60 months (Approximately 5 

years). The median survival time by the plot is at the 30th month with an estimated survival probability 

of approximately 70% indicating that 30% of the patients are likely to survive the event of interest 

(death) beyond that time. The shaded area around the survival curve indicates the confidence limit for 

the survival probability estimates, wherever it widens indicates less precision of the survival time 

estimates and shows better at the narrower levels. In Figure 5 (ii), Kaplan Meier's plot incorporates 

censoring and the number at risk at different periods of 60 months, with all 62 patients at the start of the 

study (time 0) under observation, 43 remain at risk at time 20, meaning 19 patients have experienced 

the event (death) or were censored by this time, 23 are at risk at time 40, meaning additional patients 

have either experienced the event or been censored, and 3 remain at risk at time 60, indicating a very 

small number of patients are still being observed at the end of the study period. The survival curve 

shows a more gradual decline compared to the previous plot. This suggests that while events occur 

steadily, the rate is slower and more uniform. The tail end of the curve shows a slight flattening, 

suggesting the possibility of long-term survivors or a cure fraction. The confidence intervals are wider 

towards the end, indicating more uncertainty in the survival estimates as the number of subjects at risk 

decreases.       

           

 
(i) 

 
(ii) 

Fig. 6. (i) Weibull survival distribution curve for the complete data with the PCs as covariates 

(ii) The Weibull survival distribution curve for the cure fraction 
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Figure 6 (i) shows the survival rate of colon cancer patients, using gene expression principal 

components (PCs) as covariates, with the data fitted to the Weibull proportional hazard mixture cure 

fraction model while Figure 6 (ii) represents the survival probability for the patients with the proportion 

of those that are cured. The Weibull curve shows a decreasing survival probability over time, which is 

expected in most real-world scenarios in both curves and Figure 6 (ii) the distribution of the survival 

probability plateaus at a non-zero value, indicating the presence of a cure fraction. However, the Weibull 

shows the insignificance of all the PCs (covariates) retained by the PCA indicating it is a poor fit for the 

scenario and suggests the preference of the Cox proportional hazard model and the mixture cure fraction 

with covariates and right-censoring as the best for modeling the survival time of the colon cancer 

patients with gene expressions as covariates.  

 

Table 4: Parameter Estimates for Weibull and Cox PHMCF Models using MLE with a sample 

of size 62 

Model 

Log-

Likelihood 

(Model) 

Log-

Likelihood 

(Intercept 

Only) 

Chi-

squared 

(Chisq) 

Degrees 

of 

Freedom 

(df) 

p-

value 
Iterations 

Shape 

(α) 

Scale 

(λ) 

Cure 

Fraction 

Weibull 

PHMCF 
-132.1 -169 73.69 60 0.11 2000 0.5749 3.9089 1.00 

Cox 

PHMCF 
-133.6 …….. 70.87 58 0.02 1000 ……… ……… 0.56 

 

Table 4 shows the results of the MLE explored for Weibull and Cox to maximize their parameters. 

The estimates of the Weibull parameter show that the log-likelihood for the model with covariates is 

higher than that of the model with only the intercept, indicating the model with covariates fits the data 

better. The chi-square value of (73.69) indicates an improvement in fit, but not statistically significant, 

since the p-value > 0.05. It assesses the overall fit of the model. The degree of freedom (60) represents 

the number of parameters the model estimates (including covariates and intercepts). The p-value of 

(0.11) across all the parameters estimated shows that despite the model fitting better, modeling with the 

addition of covariates is not statistically significant. The number of iterations for the optimization 

algorithm used to fit the model was 2000. The shape parameter (α = 0.5749) for α < 1, indicates that the 

hazard decreases over time, suggesting that the risk of the event (death) as a result of the colon with 

such genes decreases as time progresses. The relatively large scale (λ =3.9089) parameter indicates that 

the event (death) occurs later in the time scale. The estimated survival probabilities for 60 months 

(approximately 5 years) show a consistent decrease over time, which is expected in survival analysis 

with the Weibull mixture cure model. However, the large fluctuations in CI’s especially at later times 

indicate greater uncertainty which could imply less robustness in the estimates. The model estimated 

that 100% of the patients are cured, which may be an overestimation. By this information the dataset is 

suitable for the Weibull model as it allows for estimating hazard shape and scale, providing detailed 

insights into how risk changes over time. However, the overestimated cure fraction (100%) raises 

concerns about its applicability to cure rate analysis. 

The Cox model uses partial likelihood estimation, focusing on how covariates affect the hazard 

ratio relative to a baseline. Therefore, the focus is on the proportional effects of covariates rather than 

the baseline hazard. As a result, the Cox model doesn't directly estimate the baseline hazard or provide 

a straightforward log-likelihood for an intercept-only model, making full likelihood calculations less 

applicable in this research. Unlike the Weibull where the log-likelihood for the intercept only serves as 

a baseline for comparison of a model fit. Similarly, the chi-square (70.87) value for the Cox assesses 
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how well the model fits the data compared to the intercept-only model, with a p-value < 0.05, indicating 

a better fit with the covariates, over the intercept-only with 58 degrees of freedom. Moreover, the 

number of iterations for the optimization algorithm used to fit the model was 1000. The Cox model 

estimates that 0.56 percent of the patients are cured and 0.44 uncured. However, the Cox PHMCF Model 

does not estimate shape or scale parameters but offers a more moderate and potentially realistic cure 

fraction of 56%, which better indicates the proportion of patients cured, indicating that the dataset is 

well-suited for the Cox model, particularly when focusing on the proportional hazards of covariates 

without the need for a specific baseline hazard form. The realistic cure fraction (56%) makes the Cox 

model more practical and reliable for interpreting survival and cure rates. 

 

4. Discussion 

 
To evaluate the effectiveness of Weibull and Cox baseline hazard functions within proportional hazard 

models incorporating mixture cure fractions, particularly when modeling data that include high 

dimensional covariates and right-censoring, the research took advantage of the colon cancer DNA 

microarray data set [15]. The data contains 40 tumors and 22 normal colon human gene tissues of (62) 

observations of 2000 gene expressions acquired using an Affymetrix oligonucleotide array, making it a 

𝑀𝑥𝑛 data set. Consequent to the high dimensionality of the data, the principal component analysis 

technique was employed to reduce the dimension of the redundant dataset while retaining all vital 

information needed for the evaluation and inference. Three of the common data reduction approaches 

in the PCA were explored: Eigenvalue-one-criteria, the proportion of variance accounted, and scree plot 

to better assess and logically retain the 𝑃𝐶𝑖 as the covariates of the data for subsequent analysis using 

the proposed models. A few 60 𝑃𝐶𝑖 were retained as covariates according to the eigenvalue one criterion 

approach, 7 pcs according to the proportion of variance accounted for, and only 1 according to the scree 

plot approach. Eigenvalue one criterion suggestion of retaining 60 𝑃𝐶𝑖 and used as covariates was used 

as it gives more reliable 𝑃𝐶𝑖 , [16].  

Furthermore, the retained 60 𝑃𝐶𝑖 (covariates) were estimated by CPHM and found that all of 

them are associated with a high hazard rate with 24 of them exhibiting a greater hazard ratio of 

exponentiated coefficients exp (𝛽𝑖)  ≫ 1 indicating that the influence of these 𝑃𝐶𝑖 is so strong that even 

small changes in their values could lead to large increases in hazard that is the relative risk of the death 

of the colon cancer patients associated with each 𝑃𝐶𝑖 (covariates), moreover explaining that for every 

unit increase in the 𝑃𝐶𝑖 , the risk of the event (death) increases exactly times the number of the Hazard 

Ratio. The entire coefficients  𝛽𝑖  are large and positive, indicating an increased effect of 𝑃𝐶𝑖 on the 

hazard rate. The corresponding p-values are all extremely low and less than 0.05 typically suggesting 

that the 𝑃𝐶𝑖 are having a significant impact on the hazard rate or are all statistically significant 

contributors to the hazard rate of the colon patient’s event(death). In contrast, the estimated 𝑃𝐶𝑖 by the 

WPHM shows that only the intercept coefficient is significant, suggesting a baseline hazard that is 

constant regardless of the 𝑃𝐶𝑖 values. In this model, all the 𝑃𝐶𝑖 coefficients have p-values greater than 

0.05, and the standard errors are relatively large compared to the coefficients. This results in low z-

values and high p-values, indicating that none of the 𝑃𝐶𝑖 are statistically significant. The estimation by 

the WPHM indicates that none of the principal components 𝑃𝐶𝑖  in this model have a statistically 

significant effect on the hazard (risk of the event, death) at the conventional 0.05 level of significance 

to the colon cancer patients.                            

Lastly, the general survival time was estimated by the Cox proportional hazard mixture cure 

fraction model with the retained covariates (𝑃𝐶𝑖) and right-censoring. The results showed that the 

survival probabilities start very high, close to 1.0 at early time points, with narrow confidence intervals, 

indicating high precision and a strong likelihood that almost all individuals survive during this period 
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and gradually decrease over time. The survival probability continues to decrease significantly, reflecting 

that fewer individuals are expected to survive as time progresses. The confidence interval widens at this 

point indicating greater uncertainty in the survival probability estimates later. The cure proportion was 

estimated to be 56% and non-cure 44.4% showcasing the heterogeneity of the population. The outcome 

indicates that the cure proportion is not susceptible, while the cure is susceptible to the event(death), 

and remains at risk at the follow-up period of 5 years. Similarly, the estimate with the Weibull 

proportional hazard mixture cure fraction model showed that the Weibull model also provides precise 

estimates, with confidence intervals that are relatively narrow at early time points. However, as time 

progresses, the confidence intervals widen more significantly than in the Cox model, indicating 

increased uncertainty in long-term survival estimates at the same follow-up period of 5 years. The 

mixture cure fraction with the model as a baseline shows that 100% of the population will be cured at 

the follow-up period of 5 years which could be attributable to the insignificant of the covariates to the 

hazard risk estimated at the preliminary stage of the analysis by the Weibull proportional hazard model.  

 

5. Conclusion 
 

Modeling the survival time of cancer using high-dimensional DNA microarray data is an important 

research area. However, the challenges faced by high-dimensional data, especially in gene reduction 

and selection, often lead to the failure of many penalized likelihood methods in identifying a small, 

significant subset of the genes. To address this problem, the present study proposed and applied the 

concept of an unsupervised machine learning algorithm approach called principal component analysis 

(PCA) to perform gene reduction and estimation of its coefficients simultaneously. Given the basic rule 

in survival analysis regarding the event-to-covariate ratio, the sample size of 62 relatives to the PCs 

remains crucial even though PCA has reduced the dimensionality from 2000 to 60 as the covariates. 

However, the model selection process naturally addresses this ratio issue by employing AIC as a 

goodness-of-fit evaluation metric, guaranteeing that the best-fitting model is selected while considering 

the model's complexity.  

 Afterward, the study went further to propose two models; Cox (semi-parametric) and Weibull 

(parametric) models as a baseline hazard function to estimate the general survival probability of colon 

cancer patients using the retained 60 𝑃𝐶𝑖 by the eigenvalue 1 criteria approach of the PCA with 

proportional hazard incorporating mixture cure fraction models. From the findings which were 

computed using the principal components (covariates) and survival time with right-censoring from the 

colon cancer microarray data set, it was confirmed that the Cox proportional hazard mixture cure 

fraction model appears to be the better model based on its flexibility, precision, smaller AIC (129.1606) 

and better fit to the data. It provides more reliable estimates and aligns closely with the observed survival 

patterns. The Weibull got a larger AIC (388.2784) compared to that of the Cox. While the Weibull 

model is useful in specific contexts, the Cox model's adaptability and stronger performance in fitting 

the data make it the preferable choice in this analysis. Generally, the results established the detail that 

the CPHMCF model is a very feasible technique that can analyze DNA microarray cancer data 

accurately. In addition, the proposed CPHMCF model results can be applied practically to other related 

high-dimensional data for cancer classification and prognosis. It could be applied in instances where the 

patients exhibit some higher covariates, such as aggressive cancer subtypes, late-stage diagnoses, or 

high-risk genetic profiles. By providing estimates and accounting for cure fractions, the model can help 

in many cancer treatment strategies. These results demonstrate the model's potential value in more 

general medical research by improving decision-making and predicting accuracy in a range of cancer 

prognosis studies. As a result, we may implement the suggested CPHMCF model in the medical 

research field with effectiveness. 
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