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  Abstract 

In this paper, a novel three-parameter model called the extended odd Fréchet inverted exponential 

distribution is proposed. The density function can be expressed as a linear mixture of generalized 

inverse exponential densities and can be skewed to the right. Moreso, the hazard rate function of the 

novel model can be unimodal, increasing-decreasing and inverted bathtub shaped. Some reliability 

and statistical properties are derived and the maximum likelihood estimation technique described for 

the proposed novel model. The Monte Carlo simulations are performed to assess the performance of 

the maximum likelihood estimator for both small and large sample, and the numerical results show 

that as the sample size increases, the mean estimates tend towards the parameters true values with 

minimum errors. The performance of the novel model is illustrated by means of two real-life datasets 

and both real-life datasets show that the novel model offers a better fit compared to some other 

competing models. 

Keywords: Inverted bathtub failure rate, Inverse exponential distribution, Maximum likelihood 

estimation, Skewed datasets, Simulation. 

 

1. Introduction 

The interest of statisticians and data scientists have been in creating novel univariate probability 

models by adding one or more shape parameter(s) to well-known lifetime models in order to create 

new efficient models that offer superior flexibility in modeling datasets in numerous areas such as 

financial analysis, medicine, life testing, econometric, and engineering, among others. The significant 

role of these added shape parameters is to vary the model tail-weights, introduce skewness, and 

provide greater ability to model both non-monotonic and monotonic failure rates. The analytically 

tractable inverted exponential distribution (IED) considered as a modification of the exponential 

distribution have been widely utilized for investigating various datasets given its lack of memory 

property. Also, the IED is viewed as a distinct case of the inverted Weibull distribution proficient for 
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modelling real-life progressions with upside down bathtub failure hazard rate. However, the 

applicability of the IED is restricted given that it exhibits a decreasing density function and 

nonconstant failure rate thus cannot be used in analysing lifetime datasets with bathtub shaped failure 

rate form. 

Recently, several authors have attempted to improve the flexibility, practicability and 

modelling capability of the IED by introducing various generalizations and extensions using different 

families of distributions. For example, the Beta IED studied by Singh and Goel (2015), 

Kumaraswamy IED introduced by Oguntunde et al. (2017), Alpha power IED proposed by Unal et al. 

(2018), Gompertz IED proposed by Oguntunde et al. (2018), Weibull Alpha power IED proposed by 

Efe-Eyefia et al. (2019), odd Fréchet IED proposed by Sharifah (2019), Gompertz Alpha power IED 

introduced by Eghwerido et al (2019), Kumaraswamy Alpha power IED pioneered by Zelibe et al. 

(2019), exponentiated exponential IED studied by Asongo et al. (2020),  extended generalized IED 

introduced by Bashiru (2021), Exponentiated odd Lindley IED studied by Eraikhuement et al. (2021), 

Weibull exponential IED studied by Chama et al. (2021), generalized IED introduced by Al-Omari et 

al. (2021), odd Lomax IED introduced by Leren et al. (2021) and Exponential Gompertz IED 

proposed by Adubisi and Adubisi (2022).  

The aim of this article is to propose and study a new three-parameter model termed the 

extended odd Fréchet inverse exponential (EOFIE) distribution, which has numerous desirable 

properties. The cdf of the EOFIE model is given by 
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for all 0,  0,  0,  and 0x       . The EOFIE model is very flexible, capable of modelling 

positive real-life datasets, and offers a better fit than six competing existing generalization of the IED 

by means of two applications. The IED has the cumulative distribution function (cdf) and probability 

density function (PDF), which are given by 
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respectively, where 0   is positive scale parameter.  

The rest of this article is structured as follows. In Unit 2, the EOFIE distribution is defined. In 

Unit 3, the quantile function, median, 25th, and 75th percentiles are derived. In Unit 4, a very useful 

representation for the EOFIE density and distribution functions are derived. Basic theoretical 

properties of the EOFIE are derived in Unit 5. In Unit 6, the EOFIE parameters are estimated through 

ML estimation technique. Parameters of the EOFIE distribution is also estimated in Unit 7 through 

simulation studies. In Unit 8, the EOFIE distribution flexibility is explored through the application of 

two real-life datasets. Finally, Unit 9 concludes the article.  
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2. The EOFIE model  

Recently, Nasiru (2018) introduced a new family of distributions called the extended odd Fréchet-G 

(EOF-G) family with two extra shape parameters. The CDF of the EOF-G family is given by 
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where ( );G x   is the baseline cdf with a vector of unknown parameters ,  0,   and 0    . The 

resultant pdf of (3) takes the form  
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where ( );g x   is the baseline pdf with a vector of unknown parameters  . From now onward, we 

will denote X a random variable having the pdf (4) as ( ), ,X EOF G   − . 

The hazard rate function (hrf) of the EOF-G family is given by 
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Considering the cdf and pdf of the IED (2). Hence, the pdf of the EOFIE with the set of 

parameters ( ), ,   =  corresponding to (4) is expressed as 
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where 0   is a scale parameter, and 0 and 0    are shape parameters. The random variable X 

having the pdf (6) is denoted by ( ), ,IEX EOF    .  

The survival function (sf) of the EOFIE is defined as       
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The hazard rate function (hrf) and reversed hrf (rhrf) of the EOFIE are defined as      
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The odds function (of) and cumulative hrf (chrf) of the EOFIE are defined as       

( )

1

1

; ,

1

x

x

e

e

e
O x

e













−
−

−
−

  
  − −     

  
  − −     

=

−

 and ( )
1

; ln 1

xe

x e








−
−

  
  − −     

 
 
  = − −
 
 
 

. 

Figure 1 shows some possible shapes of the pdf and hrf of the EOFIE distribution for selected 

model parameters values. It is observed from the PDF plots that the EOFIE model can be right skewed 

and unimodal. The hrf of the EOFIE model has the merit of being capable of modeling increasing, 

decreasing and inverted bathtub shape forms for increment value of the EOFIE parameters. 

 

 

Figure 1: Plots of the pdf (top panels) and hrf (bottom panels) of the EOFIE model for selected values 

of ,   and .    
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3. Quantile function 

Let X denote a random variable such that ( )IEX EOF   with ( ), ,   = . The quantile function is 

derived by inverting the cdf of any distribution based on the uniform distribution. Moreso, the 

uniform random variables are effortlessly spawned in most statistical softwares, the quantile function 

is considered valuable for simulating random values from the EOFIE distribution. The quantile 

function ( )Q u  for ( )0,1u  is obtained by inverting (1) as 
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The median (M), 25th and 75th percentiles of X are attained by putting 0.5,u = 0.25u = and 

0.75u = in (8), correspondingly. 
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Then, the quantile function of EOFIE density function obtained by 
( )dQ u

du
, is expressed as 
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3.1 Quantile approach for skewness and kurtosis  

The quantile methodology of valuing the skewness and kurtosis of a distribution is chiefly useful 

when the distribution subsists in a closed form or in a simple analytical system. Kenney and Keeping 

(1962), and Moore (1988) suggested a quantile measure-based method for skewness and kurtosis, 

respectively. The Bowley skewness and Moor’s kurtosis for EOFIE can be examined by using the 

quantile function (8) as follows: 
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where (.)Q is the EOFIE quantile function. The Bowley skewness and Moor’s kurtosis measures do not 

hinge on the moments of the distribution and are almost unresponsive to outliers. Numerical values 

for the median (M), 25th and 75th percentiles, skewness, kurtosis, and interquartile range (IQR) for 

some nominated parameter values are provided in Table 1. Numerical values printed in Table 1 shows 

that as  increases cross different parameter values of  and  , the skewness and kurtosis decrease 

while the median, IQR, 25th, and 75th percentiles increase. Also, the skewness and kurtosis remain 

constant within the parameter values of   for different parameter values of  while   is held 

constant. Table 1 presents the Median (M), 25th and 75th percentiles, skewness (Sk), kurtosis (Ks) and 

interquartile range (IQR) for different parameter values. 

 

Table 1: Descriptive statistics of the EOFIE model 

      M 25th  75th Sk Ks IQR 

0.5 0.6 1.0 1.529 0.560 7.546 0.7222 4.231 6.986 

0.5 1.2 1.0 3.058 1.119 15.092 0.722 4.231 13.972 

0.5 2.0 1.0 5.097 1.865 25.153 0.722 4.231 23.287 

1.0 0.5 1.0 0.949 0.575 1.977 0.466 1.568 1.403 

1.0 1.5 1.0 2.848 1.725 5.932 0.466 1.568 4.208 

1.0 2.0 1.0 3.798 2.299 7.910 0.466 1.568 5.610 

1.5 1.2 1.0 2.075 1.485 3.317 0.357 1.024 1.832 

1.5 1.6 1.0 2.766 1.980 4.423 0.357 1.024 2.443 

1.5 2.2 1.0 3.803 2.723 6.082 0.357 1.024 3.359 

 

 

Figure 2: Bowley’s skewness and Moor’s kurtosis plots ( )1=  of the EOFIE distribution. 
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Figures 2 depict the three-dimensional plots of the skewness and kurtosis measures. It is clear 

that the skewness and kurtosis values are increasing in   and decreasing in   and independent of   

which corresponds with the skewness and kurtosis results in Table 1. 

 

4. Mixture representations of the EOFIE distribution 

Mixture representation is useful when deriving the statistical properties of a novel model. The series 

expanded form is easier to work with when presenting the statistical characteristics of the proposed 

novel model.  The EOFIE distribution PDF and CDF mixture representations are derived below.   

 

4.1 Expansion of the pdf of the EOFIE distribution 

The series expansion is carried out using Taylor series expansion (TSE), the EOFIE distribution PDF 
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The application of generalized binomial series expansion (BSE) to (12) gives 
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4.2  Expansion of the cdf of the EOFIE distribution 

Using TSE, the EOFIE distribution CDF is expressed as 
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Equation (16) can be reparametrized as  
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The application of generalized BSE to (17) gives 

( )
( )

, 0

11
1

!

i ji

x

i j

i j
F x e

ji


+


−

=

 + −−    
= −   

   
    (18) 

Now, applying the BSE, ( ) ( )
1

0

1
1 1 , 1

j j

i

z z z
j

 
−

=

− 
− = −  

 
 , two times in (18), the CDF is given as 

( ) , , ,

, , , 0

l

x
i j k l

i j k l

F x e



 −

=

=       (19) 

where 
( )

, , ,

11

!

i k

i j k l

i j i j k

j k li

  


+
+ − +−    

=    
   

. Furthermore, the expansion of ( )
s

F x   , for an 

integer s is given as 

( ) , , , ,

0 , , , 0

ss
s

x
p l t u s

p l t u s

F x e



 −

= =

  =         (20) 

where 
( ) ( )

, , , ,

11

!

l u l

p l t u s

s l t l t up

p t u si

  


+
+ − +−     

=     
    

. 

 

5. Statistical properties of the EOFIE distribution 

This part presents some necessary statistical properties of the EOFIE distribution. These include the 

mode, ordinary and incomplete moments, moment generating function, Bonferroni and Lorenz curves, 

Shannon and Rényi entropies, probability weighted moments, order statistics and stress-strength 

reliability. 

 

5.1 Mode of the EOFIE distribution 

The mode is obtained by taking the first derivative of the EOFIE density function with respect to x i.e. 

( ) 0df x dx = . The mode of the EOFIE distribution is given by 
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( )
( )

( ) 2
11

4

1

1
1 1 1

2 1
2

xe

x x x x

x x

df x
e e e e e

dx x

e e x




        

  

   



−
−

  
−   − − − −− −   − − − −   

−
−

− −


                   = − − − − −                          



       + − +             

0


 =




 (21) 

It cannot be solved analytically because it does not have a closed form, hence can only be obtained 

numerically. 

 

5.2 Moment and moment generating function 

In this subunit, the ordinary moment (OM), moment generating function (MGF), and incomplete 

moment of the EOFIE distribution are presented for a random variable (r.v) X. 

 

Theorem 1. If  ( )IEX EOF   with ( ), ,   = , then the rth ordinary moment of X is expressed as 

( )
( )

 ( )
, , , , 1

, , , 0 0

1
, 1

1

m j

r i j k m q r
i j k m q

r
x r

q
 



+

−
= =

 −
 = 

+
     (22) 

 

Proof: 

Let X be a r.v following the EOFIE distribution, the rth OM of X can be derived as follows: 

( ) ( ),r r

r X x f x dx 
+

−
 =  =       (23) 

Inserting (15) in (23) gives 

( ) 112

, , , ,
0

, , , 0 0

m j
l xr

r i j k m q

i j k m q

x e dx


 
−

+ + − + −  

= =

 =       (24) 

Let ( ) 11y q x −= + , then 

( )
1

, , , ,
0

, , , 0 0

1
m j

r r y

r i j k m q

i j k m q

q y e dy  
+ +− − −

= =

 =  +         (25) 

Hence, the OM is given as 

( )
( )

 ( )
, , , , 1

, , , 0 0

1
, 1

1

m j

r i j k m q r
i j k m q

r
x r

q
 



+

−
= =

 −
 = 

+
     (26) 

where 
( ) ( ) ( )

, , , ,

1 1 1 1

!

i k m q

i j k m q

k m ji j i

m qi j k

 
 

+ + +
+−   + + + −   

=     
    

. The higher order 

moments can be obtained by substituting 1,2,3,r = in the OMs (22).  
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Theorem 2. If ( )IEX EOF  , then the MGF of X is expressed as  

( )
( )

 ( )
, , , ,

1
0 , , , 0 0

1
, 1

! 1

rm j
i j k m q

X r
r i j k m q

rt
M t r

r q





+ 

−
= = =

 −
= 

+
      (27) 

 

Proof:  

The MGF is defined as 

( ) ( ) ( ) ( )
0

0 0

,
! !

r r
tX r

X r

r r

t t
M t e x f x dx x

r r
 

 +

= =

=  = =    (28) 

Inserting (22) in (28) gives 

( )
( )

 ( )
, , , ,

1
0 , , , 0 0

1
, 1

! 1

rm j
i j k m q

X r
r i j k m q

rt
M t r

r q





+ 

−
= = =

 −
= 

+
      (29) 

where 
( ) ( ) ( )

, , , ,

1 1 1 1

!

i k m q

i j k m q

k m ji j i

m qi j k

 
 

+ + +
+−   + + + −   

=     
    

. 

The conditional moments of the EOFIE distribution are derived given the importance of the 

first incomplete moment (IM) ( )1 . The sth lower and upper IMs of X are defined by  

( ) ( ) ( )
0

,
t

s s

s t X X t x f x dx  =   =      (30) 

( ) ( ) ( ),s s

s
t

t X X t x f x dx 
+

=   =      (31) 

For any s , the sth lower IM of EOFIE distribution is obtained by inserting (15) in (30). We have 

( ) ( ) 112

, , , ,
0

, , , 0 0

m j
t q xs

s i j k m q

i j k m q

t x e dx


 
−

+
− +−

= =

 =       (32) 

( )
( )( )

( )( )

1

, , , , 1
, , , 0 0

1 , 1
, 1

1

m j

s i j k m q s
i j k m q

v s q t
t s

q


 



−+

−
= =

 − +
  = 
 + 

    (33) 

where, ( ) 1

0
,

t
s xv s t x e dx− −=  is the lower incomplete gamma function.  Also, the sth upper IM of EOFIE 

distribution is obtained by inserting (15) in (31). We have 

( ) ( ) 112

, , , ,

, , , 0 0

m j
q xs

s i j k m q
t

i j k m q

t x e dx


 
−

+  − +−

= =

 =       (34) 

( )
( )( )

( )( )

1

, , , , 1
, , , 0 0

1 , 1
, 1

1

m j

s i j k m q s
i j k m q

s q t
t s

q


 



−+

−
= =

  − +
  = 
 + 

    (35) 

where, ( ) 1, s x

t
s t x e dx


− − =  is the upper incomplete gamma function. 
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The IMs are used in the calculation of other valuable statistical measures such as the mean 

deviation about the mean ( )1 1X =  − and about the median ( )2 X M =  − . The first IM given 

as ( )1  is useful in defining the mean deviation of X about the mean ( )1  and median ( )M . 

( ) ( ) ( ) ( )1 1 1 1 1 1 1
0

; 2 2 ,X x f x dx F       
+

     =  − = − = −   (36) 

( ) ( ) ( )2 1 1
0

; 2X x f x dx   
+

 =  − = − = −    

where 

1  = is the mean found by injecting 1r = in the OM (22). 

M is the median gotten by inserting 0.5u = in the quantile function (8). 

( ) ( )1
0

t

t xf x dx =  is the first IM which can be obtained by inserting 1s = in the IM (33). 

 

5.3 Bonferroni and Lorenz curves 

The Bonferroni and Lorenz curves (BLCs) are measures for income inequality. There applicability is 

considered useful to other areas like medicine, reliability, insurance and demography. The BLCs can 

be expressed in terms of the quantile function of a given distribution. The Bonferroni curve for the 

EOFIE distribution using the quantile function (8) is given by 

( ) ( )

( )( )

( )

1

1 1
1

1
;

0,1
1

,

log 1 log

u Q u
u

u

u

u




 





 −

 =   

 
 
  
 
= −  
   + −        

   (37) 

and the Lorenz curve is given by  

( ) ( ) ( )

( )( )

( )

1

1 1
1

;

0,1
1

,

log 1 log

L u u Q u
u

u

u

u





  






−

=  =   

 
 
  
 
= −  
   + −        

    (38) 
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5.4 Order Statistics 

Let 1 2, , , nX X X be a random sample from a continuous distribution and 1: 2: :n n n nX X X   are 

order statistics gotten from the sample. According to David (1981), the pdf, ( ):p nf x of the pth order 

statistic 
:p nX  is defined as 

( )
( )

( )
( ) ( )

1

: 1
, 1

p n p

p n

f x
f x F x F x

p n p

− −

=    −     − +
   (39) 

where, ( )G x  and ( )g x  are the CDF and PDF of the EOFIE distribution respectively, and ( ).,.  is the 

Beta function. Since ( )0 1F x   for 0x  , expanding ( )1
n p

F x
−

 −   gives 

( )
( )

( ) ( ) ( )
1

:

0

1
1

, 1

n p
p ii

p n

i

n p
f x F x f x

ip n p

−
+ −

=

− 
= −      − +  

   (40) 

Therefore, inserting (6) and (7) in (40) and expanding based on the binomial series expansion, the 

PDF of the pth order statistic for EOFIE distribution is given as 

( )
( )

( )1

, , , , ,

: 2
0

1

, 1

wk s
i j k q s w x

p n

w

f x e
p n p x

 ++ −

=

=
 − +

     (41) 

where, 

( ) ( ) ( ) ( )
, , , , ,

0 , , 0

1 1 1 1

!

i j q s w jn p

i j k q s w

i j k o q s

n p q k sp i j k j

i s wj k q

 
 

+ + + +−  

= = =

− +− +   + + + −    
=       

      
   . 

The distribution of the minimum and maximum order statistics can be gotten from (41) by 

setting 1p = and p n= , respectively. Also, the rth moment of the pth order statistic for EOFIE 

distribution is defined as 

( ) ( ): : ;r r

p n p nX x f x dx
+

−
 =       (42) 

By inserting (41) in (42), then 

( )
( )

( )

( )( )
, , , , ,

: 1
0

11

, 1 1

k s
i j k q s wr

p n r
w

r
X

p n p w





+

−
=

 −
 =

 − + +
    (43) 

where, 

( ) ( ) ( ) ( )
, , , , ,

0 , , 0

1 1 1 1

!

i j q s w jn p

i j k q s w

i j k o q s

n p q k sp i j k j

i s wj k q

 
 

+ + + +−  

= = =

− +− +   + + + −    
=       

      
  . 
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5.5 Probability Weighted Moment (PWM) 

The PWM of a r.v X is a very useful mathematical quantity proposed by Greenwood et al. (1979).  

 

Theorem 3. The PWM of a r.v X,
,r s of the EOFIE distribution is given as  

( )

 ( )
*

, 1

1
, 1

1
r s r

r
A r

s q



−

 −
= 

+ +
     (44) 

where *

, , , , , , , ,

, , , 0 0 0 , , , 0

m j s

i j k m q p l t u s

i j k m q p l t u s

A  
+ 

= = = =

=    . 

 

Proof: 

The PWM of a r.v X is defined as 

( ) ( ) ( )( ),

ssr r

r s X F x x f x F x dx
+

−

 =  =
      (45) 

Inserting (6) and (7) in (45), then 

( ) 112

, , , , , , , , ,
0

, , , 0 0 0 , , , 0

m j s
s q xr

r s i j k m q p l t u s

i j k m q p l t u s

x e dx


  
−

+  + − + + −  

= = = =

=       (46) 

where 
( ) ( ) ( )

, , , ,

1 1 1 1

!

i k m q

i j k m q

k m ji j i

m qi j k

 
 

+ + +
+−   + + + −   

=     
    

 , 

( ) ( )
, , , ,

11

!

l u l

p l t u s

s l t l t up

p t u si

  


+
+ − +−     

=     
    

. 

Let ( ) 11y s q x −= + + , then 

    
( )

1

*

,
0

1
r

r y

r s

s q
A y e dy

x




−
+

− −
 + + 

=  
 

     (47) 

where *

, , , , , , , ,

, , , 0 0 0 , , , 0

m j s

i j k m q p l t u s

i j k m q p l t u s

A  
+ 

= = = =

=     

The PWM of the EOFIE in gamma form is given as 

( )

 ( )
*

, 1

1
, 1

1
r s r

r
A r

s q



−

 −
= 

+ +
     (48) 

where *

, , , , , , , ,

, , , 0 0 0 , , , 0

m j s

i j k m q p l t u s

i j k m q p l t u s

A  
+ 

= = = =

=    . 
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5.6 Entropy 

The entropy of a r.v X is a measure of the dissimilarity of uncertainty. In this subunit, two widely 

known entropy measures called the Shannon and Rényi entropies (Shannon, 1984; Rényi, 1961) are 

considered. The Rényi entropy (REnt) of a r.v X is defined as 

 ( ) ( )
1

log
1

R
f x dx






+

−
 =

−  , where 0   and 1  .    (50) 

Using the similar notion for escalating the EOFIE density function (PDF), we have  

( ) ( ) , , , , 2
, , , 0 0

qm j

x x
i j k m q

i j k m q

f x w e e
x


   


+

− −

= =

   
=   

  
     (51) 

where 
( ) ( ) ( )

, , , ,

1 1

!

i k m q i

i j k m q

k m ji j i
w

m qi j k

      
+ + +

+−   + + + − + −   
=     

    
. 

Hence, the REnt of X with EOFIE distribution can be expressed as 
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Thus, the REnt of X with EOFIE distribution is given as 
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The Shannon entropy (ShEnt) of a r.v X is defined as ( )( )logES f x =  −  . The ShEnt is a 

special case of the REnt when 1  . The entropy − is defined as 

    ( ) ( )
1

log 1
1

H f x dx





+
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The ShEnt of X with EOFIE distribution is given as 
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  . 
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5.7 Stress-Strength Reliability 

Let 1X  be a system’s strength exposed to stress 
2X . If 1X  follow the 1 1 1( , , )IEEOF     and 

2X  

follow the 2 2 2( , , )IEEOF    , provided that 1X  and 
2X  are statistically independent r.vs, then the 

stress strength reliability measure which measures the performance of the system is given by 

( ) ( ) ( )2 1 1 2

0

,R P X X f x F x dx



=  =      (57) 
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   (58) 

Applying BSE with some mathematical manipulations, (58) can be written as 
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Thus, the stress strength reliability of EOFIE is given as 
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6. Parameter Estimation 

The ML estimates for the unknown parameters of the EOFIE distribution are obtained from the 

complete samples as follows. Suppose a random sample has 1 2, , , nX X X as possible outcomes 

acquired from the EOFIE distribution with ( ), ,
T

   =  as an unknown parameter vector. Let l  be 

the log-likelihood function of the EOFIE then  
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  (61) 

The concomitant score function is set as ( ) , ,

T

l l l
U 

  

   
=  

   
. The l  can be maximized by 

elucidating the system nonlinear likelihood equations acquired by differentiating (61). Parts of the 

score function are  
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The ML estimate of , ,   and   cannot be solved analytically because the nonlinear system of 

equations exists in an unclosed form, so in this research R-statistical software (Newdistns and 

AdequacyModel packages) is used to solve them numerically via iterative methods.  

 

7. Simulation Study 

Here, the performance of the ML estimates for the EOFIE model is evaluated using simulation study. 

Performance of the estimators is evaluated through the average estimates (MEs), Absolute biases, 

mean square errors (MSE) and root mean square errors (RMSE) for different sample sizes. 10,000 

samples from the EOFIE distribution are generated, each of sample size n = 25, 75, 150, 250, 350, and 

500, for selected values of , ,  and  . The absolute Bias, MSE and RMSE are computed for 

ˆ ˆˆ , ,   =  using 

10000

1

1 ˆˆ
10000

s i

i

AbsBias S S
=

= −  

( )
10000 2

1

1 ˆˆ
10000

s i

i

MSE S S
=

= −  

( )
10000 2

1

1 ˆˆ
10000

s i

i

RMSE S S
=

= −  

 

The simulation results are displayed in Table 2. The results shows that the MSE and RMSE 

for the estimated parameter values decreases as n increases. Therefore, as n increases, the average 

estimates tend towards the true values of the parameters. 
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Table 2: Simulation study for EOFIE model 

0.5, 0.6, 0.9  = = =  

n 

Average estimates Absolute Bias MSE RMSE 

̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  

25 0.5301 0.689 0.9440 0.0301 0.0089 0.0440 0.0125 0.0192 0.0072 0.1118 0.1384 0.0850 

75 0.5097 0.5873 0.9395 0.0097 0.0127 0.0395 0.0035 0.0062 0.0031 0.0588 0.0789 0.0554 

150 0.5043 0.5828 0.9374 0.0043 0.0172 0.0374 0.0016 0.0033 0.0022 0.0401 0.0573 0.0472 

250 0.5025 0.5801 0.9369 0.0025 0.0199 0.0369 0.0009 0.0021 0.0019 0.0305 0.0462 0.0441 

350 0.5019 0.5799 0.9355 0.0019 0.0201 0.0355 0.0007 0.0016 0.0018 0.0259 0.0405 0.0421 

500 0.5013 0.5797 0.9347 0.0013 0.0203 0.0347 0.0005 0.0013 0.0016 0.0216 0.0355 0.0405 

1.0, 1.2, 1.5  = = =  

25 1.0620 1.1910 1.5510 0.0615 0.0088 0.0512 0.0420 0.0267 0.0136 0.2049 0.1634 0.1168 

75 1.0200 1.1670 1.5580 0.0198 0.0332 0.0575 0.0114 0.0101 0.0068 0.1070 0.1004 0.0825 

150 1.0090 1.1620 1.5570 0.0090 0.0377 0.0570 0.0053 0.0057 0.0053 0.0730 0.0757 0.0729 

250 1.0050 1.1620 1.5530 0.0052 0.0377 0.0533 0.0031 0.0040 0.0045 0.0556 0.0629 0.0668 

350 1.0040 1.1630 1.5520 0.0039 0.0373 0.0516 0.0022 0.0032 0.0041 0.0471 0.0566 0.0642 

500 1.0030 1.1640 1.5480 0.0027 0.0356 0.0484 0.0015 0.0025 0.0037 0.0391 0.0504 0.0607 

1.5, 2.0, 2.5= = =    

25 1.5920 1.9670 2.583 0.0919 0.0334 0.0829 0.0890 0.0436 0.0269 0.2983 0.2087 0.1640 

75 1.5300 1.9440 2.5860 0.0297 0.0557 0.0859 0.0240 0.0149 0.0126 0.1549 0.1222 0.1112 

150 1.5140 1.9440 2.5810 0.0136 0.0565 0.0810 0.0112 0.0094 0.0101 0.1057 0.0967 0.1003 

250 1.5080 1.9470 2.5730 0.0078 0.0528 0.0726 0.0065 0.0068 0.0080 0.0805 0.0825 0.0895 

350 1.5060 1.9500 2.5680 0.0059 0.0504 0.0680 0.0046 0.0054 0.0070 0.0682 0.0737 0.0835 

500 1.5040 1.9520 2.5630 0.0040 0.0475 0.0734 0.0032 0.0044 0.0061 0.0566 0.0662 0.0778 

 

8. Application 

A demonstration of the EOFIE distribution flexibility using two real datasets and compared the new 

model with some existing models in the literature is presented in this section. The distribution’s 

parameters estimated by ML estimation technique, Akaike Information Criterion (AIC), Bayesian 

Information Criterion (BIC), and Consistent Akaike Information Criterion (CAIC), Hannan-Quinn 

information Criterion (HQIC), Anderson Darling statistic (A*), Cramer-von Mises statistic (W*), and 

Kolmogorov-Smirnov test (KS) are calculated to compare the fitted distributions based on each 

dataset. The fitted distribution with the smallest values in terms of the AIC, BIC, CAIC and HQIC fits 

the data better than the others.  

The first data represents 47 years North Saskachevan highest yearly flood discharges (1000 

cf/sec) at the North Saskachevan River in Edmonton. This dataset has been analysed by Montfort 

(1970) and Hag and Elgarhy (2018). 
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19.885, 20.940, 21.820, 23.700, 24.888, 25.460, 25.760, 26.720, 27.500, 28.100, 28.600, 30.200, 

30.380, 31.500, 32.600, 32.680, 34.400, 35.347, 35.700, 38.100, 39.020, 39.200, 40.000, 40.400, 

40.400, 42.250, 44.020, 44.730, 44.900, 46.300, 50.330, 51.442, 57.220, 58.700, 58.800, 61.200, 

61.740, 65.440, 65.597, 66.000, 74.100, 75.800, 84.100, 106.600, 109.700, 121.970, 121.970, 

185.560.  

The flexibility of the new EOFIE model in contrast with some existing distributions, which 

includes the Gompertz Lomax (GOLO), Odd Fréchet Inverse exponential (OFIE), Kumaraswamy 

Inverse exponential (KUIE), Inverse exponential (IE), generalized inverse exponential (GIE), 

exponential inverse exponential (EIE), is exhibited with the first dataset. The descriptive statistics of 

the first dataset are provided in Table 3. From the tables, we observed that the dataset is positively 

skewed. 

Table 3: Descriptive statistics for the highest yearly flood discharges dataset. 

Mean Median Min Max 1st Qu 3rd Qu skewness Kurtosis 

51.5 40.4 19.9 185.6 30.3 61.3 2.004 4.623 

 

Table 4 and 5 presents the models estimated values and the goodness of fit measures like 

AIC, CAIC, BIC, HQIC, A* and W* statistics while the KS statistics with its p-values are presented 

in Table 6, for comparison of the fitted distributions. The ranks in Table 5 are based on the AIC, 

CAIC, BIC, HQIC goodness-of-fit measure from the lowest to the highest values. 

 

Table 4: Estimated values for the highest yearly flood discharges (First dataset). 

Model 
Estimates 

        

( ), ,IEEOF     4.878 4.878 1.802 - 

( ),EIE    6.31 6.31 - - 

( ),GIE    5.577 93.983 - - 

( ), ,KUIE     9.695 5.579 9.695 - 

( ),OFIE    28.717 0.819 - - 

( ), , ,GOLO      0.580 0.446 0.007 3.996 

( )IE   - 39.81 - - 
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Table 5: Goodness-of-fit statistics for the highest yearly flood discharges (First dataset). 

Model AIC BIC CAIC HQIC A* W* 
-log 

(Likelihood) 

Rank 

( ), ,IEEOF     436.8 442.4 437.3 438.9 0.196 0.029 215.4 1 

( ),EIE    475.6 479.4 475.9 477.0 0.253 0.036 235.8 7 

( ),GIE    437.5 443.3 437.8 439.0 0.385 0.056 216.8 2 

( ), ,KUIE     439.5 445.2 440.1 441.7 0.385 0.056 216.8 3 

( ),OFIE    451.7 455.4 451.9 453.1 0.129 0.018 223.8 4 

( ), , ,GOLO      460.5 468.0 461.4 463.3 1.771 0.284 226.2 5 

( )IE   473.6 475.5 473.7 474.3 0.253 0.036 235.8 6 

 

Table 6: KS statistics for the highest yearly flood discharges (First dataset). 

Model KS p-value 

( ), ,IEEOF     0.072 1.0 

( ),EIE    0.29 8e-04 

( ),GIE    0.085 0.9 

( ), ,KUIE     0.085 0.9 

( ),OFIE    0.19 0.06 

( ), , ,GOLO      0.15 0.2 

( )IE   0.29 8e-04 

 

 

Figure 3: Plots of the histogram and estimated density (Left), empirical and estimated cdfs (Right) of 

EOFIE distribution for the first dataset (highest yearly flood discharges). 
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The second data signifies the strength measured in GPA for single carbon fibres (SCF) and 

impregnated 1000-carbon fibres tows. The SCF were tested under tension at gauge lengths of 10 mm 

with 63 observations. The data has been used by Badar and Priest (1982), Afify et al. (2015a), Afify 

et al. (2015b) and Mead et al. (2017). 

1.901, 2.132, 2.203, 2.228, 2.257, 2.350, 2.361, 2.396, 2.397, 2.445, 2.454, 2.474, 2.518, 2.522, 2.525, 

2.532, 2.575, 2.614, 2.616, 2.618, 2.624, 2.659, 2.675, 2.738, 2.740, 2.856, 2.917, 2.928, 2.937, 2.937, 

2.977, 2.996, 3.030, 3.125, 3.139, 3.145, 3.220, 3.223, 3.235, 3.243, 3.264, 3.272, 3.294, 3.332, 3.346, 

3.377, 3.408, 3.435, 3.493, 3.501, 3.537, 3.554, 3.562, 3.628, 3.852, 3.871, 3.886, 3.971, 4.024, 4.027, 

4.225, 4.395, 5.020 

The second data is used to compare the flexibility of the new EOFIE model with some existing 

models, which includes the Gompertz Lomax (GOLO), Odd Fréchet Inverse exponential (OFIE), 

Gompertz Inverse exponential (GOIE), Inverse exponential (IE), Gompertz exponential (GOE), 

exponential inverse exponential (EIE) distributions. The descriptive statistics of the second dataset are 

provided in Table 7.  

Table 7: Descriptive statistics for SCF and impregnated 1000-carbon fibres tows dataset. 

Mean Median Min Max 1st Qu 3rd Qu Skewness Kurtosis 

3.06 3.00 1.90 5.02 2.55 3.42 0.618 0.183 

 

Table 8 and 9 presents the models estimated values and the goodness of fit measures like 

AIC, CAIC, BIC, HQIC, A* and W* statistics while the KS statistics with its p-values are presented 

in Table 10, for comparison of the fitted models. The ranks in Table 9 are based on the AIC, CAIC, 

BIC, HQIC goodness-of-fit measure from the lowest to the highest values. 

 

Table 8: Estimated values for the SCF and impregnated 1000-carbon fibres tows (Second dataset). 

Model 
Estimates 

        

( ), ,IEEOF     1.369 1.369 3.903 - 

( ),EIE    1.715 1.715 - - 

( ),OFIE    0.941 2.320 - - 

( ), , ,GOLO      0.453 1.455 0.004 5.316 

( )IE   2.942 - - - 

( ), ,GOIE     0.008 1.339 6.045 - 

( ), ,GOE     0.016 0.788 1.771 - 
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Table 9: Goodness-of-fit statistics for the SCF and impregnated 1000-carbon fibres tows (Second 

dataset). 

Model AIC BIC CAIC HQIC A* W* 
-log 

(Likelihood) 
Rank 

( ), ,IEEOF     126.2 132.7 126.6 128.8 0.769 0.134 60.11 1 

( ),EIE    270.8 275.1 271.0 272.5 0.322 0.060 133.4 7 

( ), ,GOIE     132.8 139.2 133.2 135.3 1.025 0.149 63.4 2 

( ), ,GOE     144.3 150.7 144.7 146.8 1.693 0.258 69.15 4 

( ),OFIE    229.8 234.1 230.0 231.5 0.378 0.073 112.9 5 

( ), , ,GOLO      137.9 146.5 138.6 141.3 1.113 0.162 64.96 3 

( )IE   268.8 271.0 268.9 269.7 0.322 0.060 133.4 6 

 

Table 10: KS statistic for the SCF and impregnated 1000-carbon fibres tows (Second dataset). 

Model KS p-value 

( ), ,IEEOF     0.1 0.5 

( ),EIE    0.47 1e-12 

( ), ,GOIE     0.1 0.5 

( ), ,GOE     0.14 0.2 

( ),OFIE    0.47 1e-12 

( ), , ,GOLO      0.13 0.3 

( )IE   0.47 1e-12 

 

It is observed that the EOFIE model gives the lowest goodness of fit measures in the two 

datasets which imply that the EOFIE distribution performs superior than the other competing 

distributions. Furthermore, the (i) histogram and estimated PDF, (ii) empirical and estimated CDFs of 

the EOFIE distribution of the first and second datasets which are displayed in Figures 3 and 4, 

illustrate the flexibility and superiority of the EOFIE distribution over the other present distributions in 

this article. 
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 Figure 4: Plots of the histogram and estimated density (Left), empirical and estimated cdfs (Right) of 

EOFIE distribution for the second dataset (SCF and impregnated 1000-carbon fibres tows). 

9. Conclusion 

This paper introduced a novel three parameter model called the extended odd Fréchet inverted 

exponential (EOFIE) distribution. The overt mathematical lingos of some of the important properties 

of the new model such as the ordinary and incomplete moments, probability weighted moments, 

quantile function, Rényi and Shannon entropies, order statistics, Bonferroni and Lorenz curves are 

investigated. The distribution parameters are estimated by the ML technique and the finite sample 

performance assessed through simulation. Finally, two applications using two real-life datasets 

illustrate that the EOFIE distribution delivers a superior fit than the other existing viable models. In 

conclusion, the EOFIE distribution offers a very flexible model for analysing positive datasets arising 

in environmental and engineering fields as well as several other areas of scientific inquiries. 
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