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ABSTRACT 
This study examined the types of data that receive formal scholarly credit within and across the science, 
engineering, and mathematics (SEM) fields. The topics of whether data types are used in a way that 
encourages data reuse has not been actively studied. This study applied an exploratory method 
because formal data citation is a relatively new area. The Data Citation Index (DCI) of the Web of 
Science (WoS) was selected because the DCI provides a single access point to 400 data repositories 
worldwide across multiple disciplines. Nearly all citations were of quantitative data. The types that 
received the most credit were, in descending order, ribonucleic acid (RNA), crystal structure, protein 
sequence data, crystallographic data, Sequence Read Archive (SRA), genomic, images, nucleotide 
sequencing information, molecular structure, and crystallographic information, though citation was 
diverse across the various disciplines within these fields. In particular, qualitative data received no 
scholarly credit. This study contributes to better understanding of data types for data reuse.  
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INTRODUCTION 
 
The term “research data” refers to any form of data obtained by researchers that is accepted 
or retained in scholarly communication and used in the production of original research 
outcomes or validation of research findings. The types of these data may include such 
information as details about research techniques and materials (Blumenthal et al. 2006) and 
may be raw or analyzed, observational, experimental, simulation, derived or compiled, and 
reference or canonical. Access to various types of research data across disciplines enables 
researchers to ask and answer synthetic, integrated, and broad-scale research questions in 
ways that allow for reproducibility. Thus, for example, combining geographic information 
systems with data relating to land use, climate, topography, and so on at the national level 
can assist in answering large-scale research questions about climate change. Precise 
descriptions are needed of the types of research data that allow for standardized and 
automated data registry across the data repositories (Lannom et al. 2015) where datasets 
are maintained for future reuse. Providing for the interoperability of interdisciplinary data 
across disciplines and discipline-specific cyberinfrastructures in modern science—that is, 
examining multiple disciplines both individually and in relation to one another—is, then, an 
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essential aspect of data-intensive interdisciplinary research. Some work in this regard has 
already been done; thus, for instance, a multi-scale geospatial temporal ecology database 
has been formed from heterogeneous research data for the purpose of data reuse (Soranno 
et al. 2015). More detailed study of disciplinary differences with respect to data types and 
the awarding of scholarly credit across disciplines remains to be conducted, though. In order 
to help fill this gap in the literature on the impact of data types and data citation within and 
across diverse disciplines, two research questions were formulated, and the present study 
was conducted in order to answer these questions: 
 
(a) Which data types are cited relatively frequently in the science, engineering, and 
mathematics fields? 
(b) Which data types are cited relatively frequently across the science, engineering, and 
mathematics fields? 
 

LITERATURE REVIEW 
 
Data type can be defined as a “set of values, characterized by properties of those values and 
by operations on those values” (International Standard Organization for Standardization, 
2013, p. 227). Data may be analyzed, compiled, derived, experimental, observational, 
simulated, or raw. Examples of data types include specimens, electronic microscopy results, 
physical collections, and software. The data type is often treated at the syntactic level, such 
as “integer,” “string,” and “float,” but the syntactic definition of data types does not 
correspond well with the domain-specific meanings that are assigned to these types (Ma et 
al. 2016). 
 
Previous studies found that certain data types were more likely to be reused or capable of 
reuse (Carlson and Anderson 2007; Moore 2006; Niu 2009) and documented disciplinary 
differences in the use of second-hand data (Dale et al. 2004; Peters, 2010). In particular, 
qualitative data tend to be shared only rarely (Faniel and Jacobsen 2010; Wallis et al. 2013), 
possibly owing to such characteristics as the tendency to include sensitive personal data. 
Rather, experimental data have more been often reused (He and Nahar 2016; Zhao, Yan and 
Li 2018); thus, for example, Korean social sciences researchers were found to prefer 
quantitative and survey data for reuse (Kim, Yoon and Chung 2020) and Chinese chemistry 
researchers to use experimental and observation data widely (Chen and Wu 2017). Biologists 
share their research data depending on the type (Kim 2022). Appropriate data sharing 
involves various forms of data and is contextual (National Institutes of Health 2020). Reusers’ 
preferences for data types appear to be context-specific. For instance, surveys and 
aggregated and sequence data are more often cited (Belter 2014; Zhao, Yan and Li 2018). 
Regarding identifiers, surveys, aggregated, and clinical data have been cited more frequently 
than other data types using a Digital Object Identifier (DOI), while sequence, numerical, and 
individual-level data have been more frequently cited using a Uniform Resource Locator (URL; 
Peters et al. 2016).  
 
Data citation is the practice of providing references to data recognizing them as primary 
research results. A reference to bibliographies to an author’s own data is also regarded as a 
data citation. There have been efforts to encourage the authors of research articles to share 
their data in trusted data repositories so as to enable the bi-directional linkage of datasets 
and related publications by means of persistent and unique identifiers. Thus DataCite and 
the International Association of Scientific, Technical, and Medical Publishers (2012) released 
a joint statement outlining best practices for citing technical datasets in journals, and the 
Data Citation Synthesis Group (2014) released a Joint Declaration of Data Citation Principles 
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regarding the purposes, attributes, and processability (by both machines and humans) of 
data citation as well as the need for it. The practices of data citation in scholarly 
communication can be understood by examining a scholarly database that tracks and indexes 
data citation. For instance, the Data Citation Index (DCI) of the Web of Science (WoS) indexes 
over 13 million records of research data, 1.5 million data studies, and 3 billion records of 
software from over 440 repositories worldwide (Clarivate Analytics 2022). Thus, 
understanding the DCI helps to reveal the practices of formal data citation in scholarly 
communication. 
 
Data citation provides references to research data and, thus, formal scholarly credit to data 
sharers. Nearly 1,600 Springer Nature journals have adopted standardized research data 
policies and encourage data citation (Editorial 2019). Data citation is important for data 
sharing and reuse, as evidenced by the finding that the citation rate of published research 
increased by more than two-thirds when a detailed description of the data was provided 
(Piwowar, Day and Fridsma 2007). This effect has been documented “independently of 
journal impact factor, date of publication, and author country of origin using linear regression” 
(Piwowar 2010, p.14). Likewise, Tenopir et al. (2011) reported that an overwhelming majority 
(91.7%) of researchers whom they surveyed agreed that data citation was at least somewhat 
important when their data were reused and nearly all (95%) agreed that it is “fair to use 
other people’s data if there is formal citation of the data providers and/or funding agencies 
in all disseminated work making use of the data” (p. 10). 
 
 
MATERIALS AND METHOD 
 
Clarivate Analytics’ DCI which tracks and indexes comprehensive datasets from all over the 
world, as discussed, served to collect the cited research data records for this study. The focus 
of the study was on the science, engineering, and mathematics (SEM) fields in the context of 
which research data are shared through data repositories worldwide. A comparison of the 
major National Science Foundation (NSF) discipline codes, the Research Areas of the WoS All 
Collections (Clarivate Analytics 2012), and the research areas of the DCI (Clarivate Analytics 
2016) served to identify the disciplines for study within the SEM fields. In order to impose 
some level of quality control on the term “data-type,” this study used the classification 
scheme of the WoS and the DCI in reference to other classification schemes because the 
classification of the ISI system is widely used and is based on expert judgment (though it is 
not without critics, e.g., Boyak, Klavans and Börner 2005). This study did not include the field 
of technology because the NSF did not include it among its major disciplines.  
 
Table 1 presents the research areas sampled; the disciplines were astronomy/physics, 
biological sciences, chemistry, computing, earth sciences, engineering, and mathematical 
sciences. This study merged astronomy and physics (as astronomy/physics) though the NSF 
major discipline codes distinguish these fields because, as noted elsewhere, many 
universities house them within the same department. Interdisciplinary areas were excluded 
because of the difficulty inherent in assigning such areas to any one of the identified 
disciplines. Within the DCI, approximately 150 WoS Research Areas (i.e., the higher-level 
categories) were used rather than the 250 approximately Subject Categories (i.e., the lower-
level categories) because the former contained more datasets than the latter. 
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Table 1: Comparison of NSF Major Disciplines the with Research Areas of the WoS  

(WoS All Collections and the DCI) 
 

 
The sample included the 30 most productive authors of published documents in each 
research area. Thirty authors were used as samples in each of the SEM fields because this 
number is considered sufficient, if small, for conducting quantitative statistical analyses. 
Productive authors were identified as the first authors of the most highly cited datasets in 
the DCI. The first author was assumed to be the one who made the most significant 
contribution and the last author to be the senior researcher with the most prestigious 
reputation; however, as Wren et al. (2007) noted, this is not always the case, so the first 
author was selected. If more than one highly cited dataset was attributed to the same first 
author, the next dataset on the list was selected. All records of the 30 most influential authors 
from the DCI in each SEM field were downloaded in tabular form. The total times cited count 
consisted of all cited counts, such as the WoS Core Collection, Biosis Citation Index (BCI), 
Chinese Science Citation Database (CSCD), DCI, Russian Science Citation Index (RSCI), and 
Scientific Electronic Library Online Citation Index (SciELO CI). Data citation served as an 
indication of data reuse, though additional reuse that is documented in the form of citations 
could occur. Descriptive analysis served to assess the types of SEM research data that were 
most often cited data in the DCI. 
 
 
RESULTS 
 

Table 2 displays the data types that were most cited in SEM fields in the DCI (RQ1). As the 
table shows, “ribonucleic acid (RNA)” was the type of SEM research data most often cited, 
followed by crystal structure, protein sequence data, crystallographic data, Sequence Read 
Archive (SRA), genomic, images, nucleotide sequencing information, molecular structure, 
and crystallographic information. Consistent with the previous findings discussed above, 
quantitative data were more often cited and shared than qualitative data in the SEM fields, 
presumably because these fields emphasize quantitative data. The sharing of such 
transcripts might require reading through many pages of text from multiple participants in a 
study to determine whether they mentioned names or key dates, such as of hospital 
admission, that would constitute privileged information unsuitable for dissemination. This 
concern to protect private information by removing direct and indirect identifiers is 

NSF major discipline Research Areas of the WoS (WoS All Collections and the DCI) 

Astronomy 
Physics Astronomy & Astrophysics, Physics, Spectroscopy 

Biological sciences 

Genetics and Heredity, Biochemistry & Molecular Biology, 
Biotechnology & Applied Microbiology, Cell Biology, Developmental 
Biology, Evolutionary Biology, Marine & Freshwater Biology, 
Mathematical & Computational Biology, Microbiology, Plant 
Sciences, Reproductive Biology, Environmental Sciences & Ecology, 
Biodiversity & Conservation, Research & Experimental Medicine 

Chemistry Chemistry, Crystallography 
Computing Computer Science 

Earth sciences Geology, Oceanography, Geochemistry & Geophysics, Meteorology 
& Atmospheric Sciences, Water Resources 

Engineering Engineering 
Mathematical sciences Mathematics  
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motivated by the fact that nearly any American can be identified in datasets, even 
incomplete ones, based on only 15 demographic attributes (Rocher, Hendrickx and de 
Montjoye 2019). The International Committee of Medical Journal Editors (ICMJE) proposed 
requiring provision of the de-identified individual patient data as a condition of publication 
(Taichman et al. 2016). 
 

Table 2: The 10 Most Cited Data Types in the DCI for SEM Fields 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tables 3-10 display the disciplinary differences regarding the data types that were most cited 
in each SEM discipline (RQ2) in detail. Such a detailed examination of disciplinary differences 
was necessary because data sharing tends to be discipline-specific (Park and Wolfram 2017; 
Tedersoo et al. 2021). That is, the examination of individual disciplines allows for precise 
estimates of the types of data cited. 
 
Table 3 displays the top 10 most cited data types in the DCI for the discipline of 
astronomy/physics. The fact that the total number of data types used was relatively small 
does not necessarily mean that research data in this discipline were not being reused, for 
such reuse may simply have gone unreported. Nevertheless, while data sharing is the norm 
at least in astronomy, as is preservation (Ivezić 2012), surprisingly little citation was evident 
in astronomy/physics in the DCI. Also noteworthy in this regard is the finding reported in 
another study that the least data sharing in journal articles occurred in physics (Keynon et al. 
2016). In any case, the distribution of data types in astronomy/physics was quite skewed, 
with mass spectral data in particular accounting for more than 90% of the total, followed by 
Nuclear Magnetic Resonance (NMR) results and spectral data. The widespread use of mass 
spectral data in astronomy/physics is to be expected given the massive amounts of such data 
used to analyze large sky surveys. Research in astronomy is likely to involve observations, 
celestial coordinates, and actual astronomical objects (e.g., stars), and the integration of 
astronomical data relies on established constants and physical laws for the purposes of 
calibrating instruments and setting measurement standards. The use of “image files” and 
“final output pictures” may be attributable to the reliance on photographic observations in 
astronomy/physics. Interestingly, “data/dataset” was categorized as a type of data in the DCI 
though this term is not itself a type of research data but rather defines research data as a 
single, coherent set. 

 
 
 
 

Data type Total citations 
ribonucleic acid (RNA) 931,673 

crystal structure 754,913 
protein sequence data 528,776 
crystallographic data 490,252 

Sequence Read Archive (SRA) 277,920 
genomic 163,349 
images 113,107 

nucleotide sequencing information 109,135 
molecular structure 91,870 

crystallographic information 84,687 
Total 3,545,682 
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Table 3: Astronomy/Physics: The 10 Most Cited Data Types in the DCI 
 

 
Table 4 displays the most-cited data types in the DCI for the biological sciences. The relatively 
high rate of citation in the biological sciences may be due to the relatively high frequency of 
data sharing among biologists (Rung and Brazma 2013) as well as to the fact that biology was 
among the first SEM disciplines to adopt data sharing requirements. Thus, for instance, the 
National Institutes of Health (NIH) mandated data sharing in 2003 and the National Science 
Foundation (NSF) did so in 2011 (with subsequent revisions to its guidelines in 2013). The 
top biology journals have tended to make frequent and widespread use of official external 
data repositories for data sharing (Womack 2015). The actual data sharing among biologists 
increased significantly because of the journal publishers’ data sharing policies (Kim & Burns 
2016). In the biological sciences, data sharing and reuse to create new knowledge are more 
common than in other STEM fields (Yoon and Kim 2020). Biologists who anticipate scholarly 
citations are more likely to share data (Byrd et al. 2020). In some subdisciplines within the 
biological sciences, data sharing and reuse are common (Editorial 2018). The three most-
cited data types (i.e., RNA, protein sequence data, and SRA) accounted for over half of the 
total citations for the disciplines in the biological sciences. The biological sciences in the DCI 
received the most citations from other fields in the WoS (Park 2022). The situation is clearly 
dynamic; thus, for instance, the number of sequences in the SRA—which stores raw 
sequencing data and alignment information from high-throughput sequencing platforms and 
makes biological sequence data available (National Center for Biotechnology Information, 
n.d.)—has doubled every 6-8 months on average over the past decade (Stephens et al. 2015). 
Returning to an earlier point, the diverse data types used in the biological sciences in general, 
and the life sciences in particular, are associated with a wide range of security and sensitivity 
considerations; thus, for instance, data relating to genetic mutations in humans may be 
highly sensitive while observations of diversity in non-human populations generally is not. 
Legal agreements prevent researchers working on human participants from revealing 
sensitive data (Lewandowsky and Bishop 2016). 
 
As Table 5 shows, in chemistry, the two most common data types in the DCI accounted for 
86.61% of citations. Specifically, the crystal structure consisted of 52.51% and 
crystallographic data consisted of 34.1% of the data in the DCI. The widespread use of 
crystallographic data corresponds with the frequent sharing of the chemical structure of 
newly synthesized compounds among chemists. Such derived data—that is, data that have 
been processed or reduced in some way—are in general widely used in the discipline. 
Crystallographic data are discipline-specific and shared in the form of a Crystallographic 
Information File (CIF), a standard machine-readable text file format was developed by the 

Data type Total citations Percentage 
mass spectral data 31,072 70.80% 

Nuclear Magnetic Resonance (NMR) results 6,157 14.04% 
spectral data 3,723 8.48% 

software 1,396 3.26% 
image file 234 0.53% 

Flexible Image Transport System (FITS) file 192 0.43% 
data/dataset 170 0.39% 

final output picture 163 0.37% 
HRCROP 60 0.14% 

TEX APPB 50 0.11% 

Total 43,280 98.55% 



The Types of Research Data Receiving Scholarly Credit  
 

Page | 7 
 

International Union of Crystallography specifically for the exchange and curation such 
information. 
 

Table 4: Biological Sciences: The 10 Most Cited Data Types in the DCI 
 

 
 

Table 5: Chemistry: The 10 Most Cited Data Types in the DCI 
 

 
Table 6 displays the most-cited data types in the DCI for the discipline of computing, of which 
software was by far the most common (accounting for 91.41% of the total). The low rate of 
citation in computing is quite counterintuitive because it is, of course, the discipline most 
concerned with software code, which is, again, a type of data. This result may be attributable 
to the frequent use of proprietary software while the focus of the present study was on 
scholarly communication. The low rate of citation in the DCI is consistent with the finding 
that the research data linked to articles in computing journals in the WoS have received very 
few citations therein (Park 2022). 
 
Table 7 displays the most-cited data types in the DCI for the earth sciences. In this discipline, 
geospatial datasets associated with the Global Positioning System (GPS) were cited especially 
often, possibly owing to the frequency with which published research has been based on 
image datasets sampling three-dimensional spatial, temporal, and spectral characteristics of 
detected signals in, for instance, the measurement of cellular, tissue, and organizational 
processes and structures, as Williams et al. (2017) discussed. Examples of geospatial data 

Data type Total citations Percentage 

ribonucleic acid (RNA) 931,673 29.67% 
protein sequence data 525,973 16.75% 

Sequence Read Archive (SRA) 277,920 8.85% 
genomic 163,349 5.20% 
images 113,107 3.60% 

nucleotide sequencing information 109,135 3.48% 
molecular structure 75,899 2.42% 

FGEM 72,717 2.32% 
processed data 72,717 2.32% 

plant transcription factors and their annotation 65,536 2.09% 

Total 2,408,026 76.69% 

Data type Total citations Percentage 
crystal structure 754,913 52.51% 

crystallographic data 490,252 34.10% 
molecular structure 91,870 6.39% 

crystallographic information 84,687 5.89% 
bacterial carbohydrate structure 4,298 0.30% 

spectral data 3,720 0.26% 
crystallographic structure 3,008 0.21% 

dataset 2,410 0.17% 
molecular data 954 0.07% 

molecule 647 0.05% 
Total 1,436,759 99.95% 
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include Global Positioning System (GPS) tracks, Global Information System (GIS) map layers, 
and satellite observation data. GPS datasets represent a type that can be reused to visualize 
spatiotemporal analyses based on the computational use of source code. Generally speaking, 
the length of an earth observation time series corresponds positively with the accuracy and 
effectiveness of an assessment on which the series is based, such as predicting when a 
disaster may strike (e.g., pinpointing earthquakes and ground motion). In the earth sciences, 
then, it is especially important for researchers to be able to decode observation data from 
diverse sources, including those from the more or less distant past, and interpret them 
accurately. 
 

Table 6: Computing: The 10 Most Cited Data Types in the DCI 
 

 
 

Table 7: Earth Sciences: The Most Cited Data Types in the DCI 
 

 
Table 8 displays the seven data types that together accounted for all of the citations in the 
DCI for the discipline of engineering. In engineering, 99.71% of citations were of test data; 
most of the rest were of datasets (0.13%). Data citation was less frequent in engineering than 
in other SEM disciplines, possibly because industrial and commercial contracts tend to be a 
more typical form of communication than scholarly papers (e.g., commissioned contracts in 
aerospace-, construction-, and defense-engineering contexts; again, the focus in the present 
study was on scholarly communication). That is, engineering is a discipline in which 
commercial enterprises, rather than public service, are often the primary concern and as 
such plays a role in a wide range of industries, each with its own working practices. 
Proprietary data from commercially sponsored research may have significance for future 

Data type Total citations Percentage 
software 18,246 91.41% 

code 1,278 6.40% 
model 416 2.08% 
dataset 3 0.02% 

database 2 0.01% 
other 2 0.01% 

raw experimental data 2 0.01% 
chemistry data 1 0% 

dataset used in the paper 1 0% 
diagrams 1 0% 

Total 19,952 99.95% 

Data type Total citations Percentage 

dataset 32,975 30.64% 
interactive resource 22,264 20.69% 

GPS dataset 13,080 12.15% 
geoscientific information 9,108 8.46% 

GPS collection 5,741 5.33% 
text 4,033 3.75% 

navigation primary 3,691 3.43% 
protein sequence data 2,803 2.60% 

digital 2,699 2.51% 
Total 96,394 89.56% 
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patents and therefore be subject to an embargo period with respect to sharing. Researchers 
involved with industries are more reluctant to engage in data sharing owing to concerns 
about the reuse of the data for commercial purposes (Vogeli et al. 2006). Test data are 
important in engineering—and hence well-represented in Table 8—because the bulk of the 
research data are collected during the design and redesign phases. In product research, for 
instance, the performance of a series of designs and redesigns is usually monitored, recorded, 
and preserved for use throughout the whole product life cycle. 
 

Table 8: Engineering: The Data Types Cited in the DCI 
 

 
Table 9 displays the data types cited in the DCI for the mathematical sciences, of which, 
interestingly, there were only five. The software and matrix data types together accounted 
for nearly all of the citations (99.63%). The type “GEOID ondulation [sic] given on a grid” was 
counted with “GEOID undulation given on a grid” because “ondulation” is a typographical 
error. 
 

Table 9: Mathematical Sciences: Data Types Cited in the DCI 
 

 
 
DISCUSSION 
 
The accurate classification of data types is crucial to facilitate data reuse and citation and 
thereby promote scientific reproducibility. Such classification is time-consuming, though, 
and can require prior knowledge and additional work on the part of data sharers. Sharing 
would accordingly be facilitated with the implementation of procedures for identifying 
machine-actionable data types automatically and in a standardized way across disciplines, 
but this is no easy task, in particular because the machine-actionable classification of data 
types depends on machine-readable definitions. The task can be accomplished through the 
creation of data-type registries that feature a common and open interface and accurate 
descriptions of data; further, the establishment of a standardized set of elements describing 
data types would make possible automated typing of data (Lannom and Broeder 2014). By 

Data type Total citations Percentage 

test data 3,749 99.71% 

dataset 5 0.13% 
GIS vector data 2 0.05% 

Quartz Crystal Microbalance (QCM) data 1 0.03% 
microscopy images 1 0.03% 

fluorescence intensity data 1 0.03% 
Microsoft Excel spreadsheet 1 0.03% 

Total 3,760 100% 

Data type Total Citations Percentage 

software 8,155 82.94% 
matrix 1,640 16.69% 

GEOID undulation given on a grid 35 0.35% 
dataset 1 0.01% 

academic test score data 1 0.01% 

Total 9,832 100% 
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means of a web interface, even researchers without advanced technical skills could easily 
manage, query, and annotate their data. Similarly, for instance, authorized users can 
currently create specific data types by submitting a JavaScript Object Notation (JSON) 
schema through a web interface (Izzo et al. 2014). In order to retrieve and use data from a 
repository quickly and accurately, a researcher needs to know their format, structure, and 
meaning as well as how to use the various tools and services available for data processing. 
However, as Read et al. (2015) discussed, a single dataset could be in the form of a discrete 
data type from a specific diagnostic device or consist of all of the data collected or analyzed 
during a research project or pre- or post-intervention or of every individual measurement 
reported in a bibliography. Shared data could also be in the form of tables or graphs that 
display trends in the sizes of structures in, for instance, treated or untreated cells over time 
by bringing the difficulties in ensuring accurate classification of data types. The Research 
Data Alliance Data Type Registries Working Group confirmed that a precise and detailed 
description of the data type is the essential consideration for data sharing and reuse so as to 
accommodate the requirements of each discipline (Lannom, Broeder and Manepalli 2015). 
 
The wide use of multiple data types from various researchers across diverse disciplines can 
also impede data citation. In the environmental sciences, for instance, physically based 
distributed hydrologic models require geospatial and time-series data in order to be 
processed into model inputs, a task that involves considerable time and effort on the part of 
researchers (Gichamo et al. 2020). Data types affect the level of cyberinfrastructure needed 
for any given data. Considering the broad range of data types in use across the SEM fields 
found in the present study, the diversity of data management can and should correspond to 
the range of access conditions applied. Data types need to be standardized and made 
discoverable through one or more piece of interoperable cyberinfrastructure to facilitate the 
identification and distribution of those that are useful. Access to some data is limited by 
embargoes, while other data may be released immediately or deemed too sensitive to be 
released at all, so the license type and authorship need to be clarified. Data repositories 
likewise must be able to accommodate a broad range of data types, even if doing so requires 
large-scale investment in cyberinfrastructure. While some biomedical repositories, such as 
Gene Expression Omnibus (Brandt and Uden 2003) and ArrayExpress (Kolesnikov et al. 2015), 
feature combined interfaces to provide browsing and search features based on the filter 
options (e.g., experiment type or organism), such interfaces remain insufficient to address 
fully the demands for data reuse across the wide variety of data types currently used in the 
SEM fields. 
 
 
CONCLUSIONS 
 
The findings presented here indicate that various data types are frequently cited across SEM 
fields and among disciplines. All citations were of quantitative data. Overall, the most-cited 
types in SEM fields in the DCI were ribonucleic acid (RNA), crystal structure, protein sequence 
data, crystallographic data, Sequence Read Archive (SRA), genomic, images, nucleotide 
sequencing information, molecular structure, and crystallographic information. By discipline, 
the three most commonly cited types were, for astronomy/physics, mass spectral data, NMR 
results, and spectral data; for the biological sciences, RNA, protein sequence data, and SRA; 
for chemistry, crystal structure, crystallographic data, and molecular structure; for 
computing, software, code, and models; for the earth sciences, datasets, interactive 
resources, and GPS data; for engineering, test data, datasets, and GIS vector data; and, for 
the mathematical sciences, software, Matrix, and GEOID undulation on a grid. This study has 
clear implications for the implementation of information systems for research data regarding 
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the implementation of widely accepted standards for data identification and attribution. It is 
hoped that the findings presented here will contribute to efforts to make data citation more 
practical and advantageous for researchers and data hosting facilities. A future study will 
include a broader selection of disciplines to assess citation practices relating to the types of 
research data types and the awarding of scholarly credit in various fields. Despite the care 
taken in conducting this study, its limitations include a lack of detail regarding the contexts 
for the data types and citations. Future studies could overcome this limitation by employing 
a qualitative or mixed-methods approach that may better explain the underlying 
circumstances by taking into account more specific types of data and citations. 
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