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ABSTRACT 

Motifs are patterns of interactions occurring in complex networks and characterized by the fact that 

they occur significantly more than expected. Network indicators derived from motifs are introduced in 

this contribution. They provide yet another numerical view on network structures. Based on the notion 

of a motif’s h-index the motif’s Hirsch subgraph is constructed. This subgraph is a new characteristic 

structure in weighted networks. Use of these notions has been illustrated in two case studies: one 

involving a co-authorship and one involving a co-keyword network.  
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INTRODUCTION 

 

Since the end of the 20th century the study of networks has become a hot topic. This 

renewed interest in networks was largely due to the ubiquity of the Internet and consequent 

work by, e.g., Rousseau (1997), Watts and Strogatz (1998) Barabási and Albert (1999) and 

Albert and Barabási (2002). Terms such as “small world networks”, “scale-free networks” and 

“complex networks” became popular in many fields including molecular biology, genetics, 

medical informatics and neuroscience (Jeong et al. 2000; Yarfitz and Ketchell 2000; Girvan 

and Newman 2002; Raeymaekers 2002; Newman 2003, 2012; Barabási and Oltvai 2004; 

Mittler et al. 2004; Boccaletti et al. 2006). Also information scientists recognized the 

importance of network theory (Kretschmer 1997; Chen et al. 2002; Otte and Rousseau 2002; 

Börner et al. 2007). In this contribution we will especially focus on network motifs.  
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Motifs are patterns of interactions occurring in complex networks and characterized by the 

fact that they occur significantly more than expected (Milo et al. 2002). To be precise: a motif 

M is a pattern that re-occurs in a network. Mathematically a motif can be said to be the 

name of the equivalence class of a set of isomorphic subgraphs. We refer to these subgraphs 

as the subgraphs corresponding to motif M. 

 

Motifs occur in transcription networks, signaling and neuronal networks, economics, 

information and social networks and other types of networks (Sporns and Kötter 2004; 

Krumov et al. 2011; Zhang et al. 2014). In all these networks motifs serve as basic building 

blocks. Barabási and Oltvai (2004) pointed out that the occurrence of motif clusters seems to 

be a general property of all real networks. In Alon (2007) the author points out that one of 

the most common composite motifs is a negative feedback loop between two proteins. An 

example is shown in Box 1 of (Alon 2007). Krumov et al. (2011) analyzed co-authorship 

networks and found that numbers of received citations of group of authors were correlated 

with the occurrence of certain motifs. In particular they observed that the box motif, i.e. a 

closed chains of four authors, had the highest average citation frequency per link. Although 

these authors stated that their results were robust across ways of mapping citation 

frequencies onto the co-author graph, Klosik et al. (2014) pointed out that the results 

obtained by Krumov et al., (2011) were highly sensitive to the exact implementation of an 

author disambiguation procedure. Choobdar et al. (2012) proposed a new method to 

incorporate edge weight information in motif mining. Further, Han et al. (2013) stated that 

the motif-based node degree and edge degree could be applied to measure the importance 

of nodes and edges in a network. For further use we recall that the strength of a connected 

subgraph in a weighted network is simply the sum of the weights of the links constituting this 

subgraph. 

 

The h-index idea as introduced by Hirsch (2005) for individual scientists has been applied in 

many other cases, including network analysis (Korn et al. 2009; Schubert et al. 2009). We 

make a distinction between three cases: h-indices of networks, h-indices of nodes and 

h-indices of links. 

 

A network, weighted or not, has node h-index hN if hN is the largest natural number such that 

hN of its nodes have a degree at least equal to hN (Schubert et al. 2009). Similarly, a weighted 

network has h-strength hS if hS is the largest natural number such that hS of its link weights 

(link strengths) have strength at least equal to hS (Zhao et al. 2014). Zhao, Rousseau and Ye 

(2011) introduced the h-degree of a node in a weighted undirected network as follows: The 
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h-degree (dh) of node n in a undirected weighted network is equal to dh(n), if dh(n) is the 

largest natural number such that n has dh(n) links each with strength at least equal to dh(n). 

This notion was extended to the case of directed networks in (Zhao et al. 2012). A weighted 

network’s h-core, or h-core in short, is defined as the set of all nodes with h-degree at least 

equal to h and their links, if they exist.  

 

In this application we extract simple motifs using the FANMOD software (Wernicke and 

Rasche 2006). Next we combine the ideas of motifs and h-type indices. This leads to the 

notion of a motif’s Hirsch subgraph. In this article we focus on a simple motif, namely a 

3-node triangular motif, but point out that the method can be extended to other multi-node 

motifs. 

 

METHOD 

 

Characteristic indicators of motifs: the MSIKCA requirements  

According to (Milo et al. 2002) network motifs are connected subgraphs (sub-networks) of a 

given network that meet the following three criteria: 

(a) The probability that this subgraph appears in a randomized network an equal or 

greater number of times than in the real network under study is smaller than a 

cut-off value pc. In (Milo et al., 2002) the value for pc was taken equal to 0.01 and 

was estimated from 1000 randomized networks. These randomized networks had 

the same number of nodes and the same single node properties as the network 

under study. Concretely: each node in the randomized network had the same 

number of incoming and outgoing edges as the original one in the real network. 

Furthermore, the randomized networks used to calculate the significance of n-node 

subgraphs were generated so as to preserve the same number of all (n-1)-node 

subgraphs as in the real network. 

(b) The number of times the motif appears in the real network, and this with distinct 

sets of nodes, is at least four. 

(c) The number of appearances in the real network (Nreal) is significantly larger than in 

the randomized networks (Nrand). Concretely, the following criterion was used: Nreal - 

Nrand > 0.1(Nrand). This extra requirement was added to avoid detecting as motifs 

some common subgraphs that have only a slight difference between Nrand and Nreal 

but have a narrow distribution in the randomized networks. 

 

As these requirements were proposed by Milo, Shen-Orr, Itzkovitz, Kashtan, Chklovskii and 

Alon (Milo et al. 2002) we refer to them as the MSIKCA requirements. These concrete, 
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somewhat overlapping, restrictions determining which subgraphs are considered to be 

motifs in a network, are described in the Supplementary Materials of (Milo et al. 2002). We 

note though that these requirements are ad hoc and for this reason do not provide a 

mathematically precise definition of a motif. 

 

The importance of motifs is illustrated by the following example. Milo et al. (2002) show that 

there are 13 different three-node subgraphs in a directed network. Yet only one of them, the 

so-called feed-forward loop occurs in the genetic network of E. coli. This network has also a 

second motif, which is a 4-node subnetwork, known as the bi-fan. For details and drawings of 

these motifs we refer the reader to (Milo et al. 2002). 

 

The procedure for finding motifs, especially in anything but a trivially small network clearly 

needs dedicated software. Such a program, designed by Wernicke (2005) and called 

FANMOD is freely available at http://theinf1.informatik.uni-jena.de/motifs/. Note though 

that counting motifs or subnetworks in general is not trivial as different methods are feasible. 

Indeed, there exist different ways to count motif frequency referred to as F1, F2 and F3 

(Schreiber and Schwöbbermeyer 2005). Frequency concept F1 has no restrictions and 

considers all matches, even if elements of the target graph have to be used several times. 

Concept F2 allows the sharing of vertices but not of edges and therefore calculates the 

number of instances of a motif that have disjoint edges. Finally, concept F3 only considers 

subnetworks to be different if their vertices and edges are disjoint and hence, they can be 

seen as non-overlapping clusters. This third frequency is known as the uniqueness value of a 

motif (Schwöbbermeyer 2008). Concept F1 is the common method and is the one used by 

FANMOD. FANMOD can find motifs of 3 to 8 nodes in a given network and can calculate the 

following three indicators (Milo et al. 2002; Wernicke and Rasche 2006; Han et al. 2013). 

 

Indicator 1: Relative subgraph and motif frequency 

Given a connected subgraph V with n nodes, if V appears Nreal times in a real network X and if 

there exist subN connected subgraphs with n nodes in X, then the relative frequency of 

subgraph V in a given network is defined as 

sub

real

N

N
Vf )(                               (1) 

If V is a motif of the network, then f(V) is called the relative motif frequency.  

 

 

Indicator 2: motif p-value 
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Let M be a motif, or generally an equivalence class of connected subgraphs, which occurs 

Nreal times in a real network. Now one considers n randomized networks as described above 

and for each i = 1, … , n one compares Nrand
i, the number of times M occurs in the i-th 

random network, with Nreal. If Nrand
i/ Nreal ≥ 1 then pi = 1, otherwise pi =0. Finally the p-value 

of M is:  

n

p
p

n

i i  1                               (2) 

If p is smaller than the given cut-off value pc, M is a motif. The smaller p, the more important 

the motif. 

 

Indicator 3: z-score 

For a motif, let Nreal be its number of appearances in the real network and Nrand
i its number of 

appearances in the i-th randomized network. Denoting the mean of all Nrand
i as <Nrand> and 

the corresponding standard error as σrand, we define the z-score of the real network by: 

real rand

rand

N N
z



  
                               (3) 

The three indicators characterize a motif in a network. Next we will apply the ideas explained 

above in the context van h-indices in weighted networks.  

 

Motifs and h-indices 

Given a k-node (k ≥3) motif in a weighted network we define the following two notions: the 

motif’s h-index and the motif’s Hirsch subgraph. We recall that the corresponding subgraphs 

of a motif are subgraphs in a weighted network and hence each of them has a strength as 

defined earlier. If weights are natural numbers then the strength of a k-motif is at least equal 

to k-1. 

Definition 1. If M is a k-node motif in a given weighted network, then its h-index, 

denoted as hM, is defined as the largest natural number such that there are hM corresponding 

subgraphs with strength at least equal to hM. 

Definition 2. If M is a k-node motif in a given weighted network then M’s Hirsch 

subgraph is the union of all corresponding subgraphs with strength at least hM.  

 

We remark that a motif’s Hirsch subgraph is not necessarily connected. Moreover, a Hirsch 

subgraph may be the union of more than hM subgraphs. Indeed, this may happen if the 

subgraph at rank hM has weight hM and one or more subgraphs (at rank hM +1, etc.) also have 

weight hM.  

By the above definitions, the algorithm for finding a motif’s Hirsch subgraph in a given 
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weighted network is constructed as follows. If a motif is already known one may start at step 

1. 

Step 0: Obtaining all k-node motifs (k ≥ 3) in a weighted network X, using the FANMOD 

software (Wernicke & Rasche, 2006) or any other software that is capable of finding motifs; 

Step 1. Choose a motif M; 

Step 2: Extracting all corresponding subgraphs in X, using the ESU (Enumerate 

SUbgraphs) algorithm (Wernicke, 2005; Wernicke & Rasche, 2006); 

Step 3: Computing the strengths of the corresponding subgraphs and ranking them 

from large to small;  

Step 4: Based on step 3, determine hM; 

Step 5: Construction of the Hirsch subgraph of M in network X. 

 

We provide an example of this algorithm, based on Figure 1. 

 

 

Figure 1: Weighted undirected network U 

 

Using FANMOD, we computed the main parameters of the 3-node triangle motif (which has 

ID 238 in FANMOD). Results are shown in Table 1. 

 

Table 1: The main parameters of the 3-node motif M in U 

ID motif 
Frequency 

(original) 

mean-frequency 

(random) 

standard-error 

(random) 
z-score p-value 

238 

  

18.18% 0.10% 0.01088 16.621 0 

 

The concrete computation consists of the following steps: 



Motifs in Weighted Networks and their Hirsch Subgraphs 

Page | 27  
 

Step 0-1: We have chosen the triangle (ID 238) and verified, see Table 1, that it is indeed 

a motif for the network U shown in Figure 1. The calculation showing that the frequency of 

this motif in network U is 18.18 percent is given in the Appendix. 

Step 2: Using the ESU algorithm, we find four corresponding subgraphs: {A,B,C}, {A,C,D}, 

{E,F,G}, {E,F,H}.  

Step 3: Computing the strengths of each 3-node subgraph, we obtain the values 14, 11, 

10, 8 when ranked from largest to smallest. 

Step 4: Clearly hM = 4. 

Step 5: Bringing these four subgraphs together leads to M’s Hirsch subgraph, shown in 

Figure 2. 

 

Figure 2: Hirsch’ subgraph of motif M in graph U 

 

As a further illustration we worked out two real world case studies.  

 

MATERIALS AND METHOD 

 

Two datasets are considered as case studies. Dataset 1 was retrieved from the Web of 

Science (WoS) databases (SCI, SSCI and A&HCI) on June 8, 2015, using the following search 

strategy: 

TS = ((“information retrieval”) or (“information search”)) and PY = 2010-2014.  

 

Dataset 2 was retrieved from the Web of Science (WoS) databases (SCI, SSCI and A&HCI) on 

June 15, 2015, using the following search strategy: 

TS = (bibliometric* or informetric* or scientometric* or webmetric* or cybermetric*) and PY 

= 2005-2012. 

 

These datasets contain, respectively, 3,411 and 3,058 items. The first one is used to construct 
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a co-author network, while the second one is used to construct a co-keyword network. 

Keywords are retrieved from the DE field (Authors Keywords) and the ID field (Keywords 

Plus). 

 

RESULTS 

 

As a first step we construct weighted networks based on these datasets. For dataset 1, we 

construct a co-author network in which authors are connected if they have co-authored at 

least one article and weights represent the number of actual collaborations between authors. 

For dataset 2, we construct a co-keyword network. Words are connected if they co-occur in 

the Authors or Keywords Plus fields, weights represent the number of times words co-occur. 

Basic network parameters are shown in Table 2.  

 

Table 2: The basic network parameters of datasets 1 and 2 

 

 

 

 

Dataset1 

Subnetwork 

Parameters 

Complete 

co-author 

network 

Network 

consisting 

of all motifs 

h-core h-subnet 
M’s Hirsch 

subgraph 

Nodes 7856 6611 33 14 26 

Edges 15398 14613 53 9 30 

Average node degree 3.9201 4.42 3.21 1.29 2.31 

Average of edge strength 1.08 1.08 3.42 6.11 4.57 

Network density 0.0005 0.0007 0.1004 0.0989 0.0923 

Average clustering 

coefficient 

0.78 0.93 0.85 0.17 0.98 

Average of degree centrality 0.0005 0.0007 0.1004 0.0989 0.0923 

 

 

 

 

Dataset2 

Parameters Complete 

co-keyword 

network 

Network 

consisting 

of all motifs 

h-core h-subnet M’s Hirsch 

subgraph 

Nodes 4882 4840 7 15 126 

Edges 21949 21505 22 19 250 

Average of node degree 8.9918 8.8864 6.2857 2.5333 3.9683 

Average of edge strength 1.1677 1.1591 19.5909 27.7368 4.94 

Network density 0.0018 0.0018 1.0476 0.1810 0.0317 

Average clustering 

coefficient 

0.8800 0.8864 1.0 0.2273 0.9844 

Average of degree centrality 0.0018 0.0018 1.0476 0.1810 0.0317 

 

 

For the definitions of the network indicators shown in Table 2 we refer the reader to 
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(Wasserman and Faust 1994; Otte and Rousseau 2002).  

 

Choosing the triangle subgraph we obtained the results shown in Table 3. This shows that 

the triangle is indeed a motif for these two networks. The basic parameters of this motif’s 

Hirsch subgraph are shown in the last column of Table 2. 

 

Table 3: Main parameters of the triangle motif in two real networks 

Dataset 

Type 
Motif 

Frequency 

[original] 

Mean 

Frequency 

[random] 

Standard 

Error 

[random] 

z - 

score 

p - 

value 

1 

Co-author 

  

50.822% 0.0004 % 1.2 e-005 42.42 0 

2 

Co-keyword 

  

2.2668% 0.0046 % 0.00016 137.8 0 

 

Although the main parameters of this motif in the co-authorship network and in the 

co-keyword network are quite different, their p-values are so small that they can only be 

reported as zero. This means that in both networks the triangle motif is a very important 

structure.  

 

The Hirsch subgraphs of the triangle motif in datasets 1 and 2 are shown in Figures 3 and 4 

respectively, drawn using NetDraw. We recall that the nodes belonging to these subgraphs 

are not necessarily high degree nodes. Nodes in a triangle Hirsch subgraph have at least 

degree two, but nodes with exactly degree two may occur often. Figure 3 has many nodes 

with degree two. Node ScienceWatch.com (middle left) in the co-keyword network also has 

only degree two.  
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Figure 3: The triangle’s Hirsch subgraph of the co-authorship network (hM =13)   

 

 

 

Figure 4: The triangle’s Hirsch subgraph of the co-keyword network (hM =95) 

 

 

The Hirsch graphs shown in Figures 3 and 4 are very different, illustrating that their 

characteristics depend on the concrete weighted information network. 
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ANALYSIS AND DISCUSSION 

 

In this section, we first formulate some simple mathematical results. 

 

If M is a k-motif (k ≥ 3) not necessarily the triangle motif, and a link l1 has strength larger than 

or equal to hM – 1, then each connected subgraph corresponding to this motif M and build on 

this link, i.e. the link l1 is one edge of this subgraph, is part of this motif’s Hirsch graph. This is 

obvious as there are at least two edges in a 3-motif (k-1 links in general) and a link has at 

least weight 1, so that a subgraph including l1 has at least strength (hM-1) + 1 = hM and hence 

is part of this motif’s Hirsch network. 

 

The following inequality holds for the triangle motif M 

3 ≤  ℎ𝑀 ≤  𝑁𝑟𝑒𝑎𝑙                     (4) 

Proof. By definition a motif occurs at least four times. Moreover, a triangle has a least 

strength 3. This proves the inequality. 

 

Using the same arguments we have the following inequality for any k-motif (k≥3) 

𝑚𝑖𝑛(𝑘 − 1, 4) ≤  ℎ𝑀 ≤ 𝑁𝑟𝑒𝑎𝑙            (5) 

 

Motif strengths follow a power-law. Furthermore, checking if, at least for our examples, motif 

strengths follow a power-law distribution, we find this to hold approximately as illustrated in 

Figure 5. 

 
Figure 5: Distribution of motif-strength of dataset 2 (co-keyword network) 
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The power-law package developed by Alstott et al. (2014, available at 

https://pypi.python.org/pypi/powerlaw), finds a best-fitting power-law parameter α = 2.58. 

 

 

CONCLUSION 

 

Motifs are known to be significant structures in many types of networks. By considering the 

strength of motifs in weighted networks we introduced an h-index of a motif and 

constructed the motif’s Hirsch subgraph. These motif derived network indicators provide yet 

another numerical view on network structures. A motif’s Hirsch subgraph is a new 

characteristic structure in such networks. Use of these notions has been illustrated in two 

case studies: one involving a co-authorship network and one involving a co-keyword 

network.  

 

Our work has a number of limitations. First we realize that as a motif’s Hirsch subgraph is a 

union of local structures, it might be of less importance for the network as a whole. 

Moreover, we only processed one 3-node motif. This leaves many k-node motifs to be 

studied. However, when k ≥ 4, the computational complexity increases quickly. At present, 

we do not know a software tool that can handle the computation when k > 8. 

 

We consider the motif’s Hirsch subgraph which combines the h-index idea with the notion of 

motifs in weighted networks to be a new and interesting cluster-structure. As such we 

express the hope that our work will stimulate further investigations involving motifs. 
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APPENDIX  

 

Network U has eight nodes. The maximum possible number of connected 3-graphs is (
8
3

) = 

56. Yet, not all of them are connected subgraphs in U: only 22 are, namely {A, B, C}, {A, B, D}, 

{A, B, E}, {A, B, G}, {A, C, D}, {A, C, E}, {A, D, E}, {A, D, H}, {A, E, F}, {A, E, G}, {A, E, H}, {B, C, D}, 

{B, C, G}, {B, E, G}, {B, F, G}, {C, D, H}, {D, E, H}, {D, F, H}, {E, F, G}, {E, F, H}, {E, G, H}, {F, G, H}. 

Among these 22 four are triangles. Hence Nreal = 4/22 = 0.1818. 

 


